A Comparative Measurement Study of Commercial 5G mmWave Deployments

Arvind Narayanan†‡*, Muhammad Iqbal Rochman‡*, Ahmad Hassan†, Bariq S. Firmsanyah§, Vanlin Sathyä, Monisha Ghosh†, Feng Qian† and Zhi-Li Zhang‡

†University of Minnesota, ‡University of Chicago, §Institut Teknologi Bandung, †Celona, Inc.

Abstract—5G-NR is beginning to be widely deployed in the mmWave frequencies in urban areas in the US and around the world. Due to the directional nature of mmWave signal propagation, improving performance of such deployments heavily relies on beam management and deployment configurations. We perform detailed measurements of mmWave 5G deployments by two major commercial 5G operators in the US in two diverse environments: an open field with a baseball park (BP) and a downtown urban canyon region (DT), using smartphone-based tools that collect detailed measurements across several layers (PHY, MAC and up) such as beam-specific metrics like signal strength, beam switch times, and throughput per beam. Our measurement analysis shows that the parameters of the two deployments differ in a number of aspects: number of beams used, number of channels aggregated, and density of deployments, which reflect on the throughput performance. Our measurement-driven propagation analysis demonstrates that narrower beams experience a lower path-loss exponent than wider beams, which combined with up to eight frequency channels aggregated on up to eight beams can deliver a peak throughput of 1.2 Gbps at distances greater than 100m.

I. INTRODUCTION

5G New Radio (NR) has been specified by 3GPP [1], [2] to operate in low-band (<1 GHz), mid-band (1 to 6 GHz) and high-band or mmWave (>24 GHz). While majority of 5G-NR’s commercial deployments are in the low- and mid-band frequency range, recent deployments in mmWave have also been rapidly increasing, especially in urban areas. 5G NR in the mmWave can harness much higher bandwidths (up to 800 MHz) compared to mid-band and hence offers the potential for greatly increased throughput. However, in order to compensate for the omni-directional and frequency dependent path-loss yet at the same time provide robustness and coverage, mmWave systems use directional beams at both – transmitter (Tx) and receiver (Rx) – ends. While a number of theoretical and experimental studies [3]–[5] have been conducted for the different elements of a 5G mmWave cellular system (e.g., path loss measurements, beam management, etc.), it has not been feasible until recently to verify and understand the performance of commercially deployed 5G mmWave systems. It is important to understand its performance in the real-world, since mmWave propagation can be extremely variable due to a plethora of factors including but not limited to the position

of the body when a smartphone or other user equipment (UE) is held in the hand, orientation with respect to the base station (BS), obstructions due to foliage, vehicles and buildings etc. In other words, real-world mmWave systems exhibit a propagation environment that is very different from theoretical models and propagation analysis based on limited channel sounding experiments [6]–[9] which do not take these factors into account. Furthermore, the implementation details of beam-management such as how many beams are used, carrier aggregation across beams etc. are left to operators and equipment manufacturers/vendors leading to potential performance differences in deployments. In order to study their effects on end-user performance, conducting in-situ measurements and analysis are called for.

Our objective in this paper is to contribute towards the understanding of real-world 5G mmWave deployment. We performed detailed measurements of two major 5G operators with different 5G mmWave deployment parameters in two representative environments – an urban canyon and an open field – in Chicago, a major U.S. city. We summarize the key contributions as well as the findings of this measurement study.

• **mmWave Deployment Parameters (§V-A).** For both the operators, we reveal the configuration of several key parameters related to deployment and beam management such as 5G-NR bands, channel bandwidth, maximum number of channel aggregation, sub-carrier spacing, PCI assignment, number of Tx beams, etc. We also highlight key differences in their strategies and use them to reason our findings.

• **mmWave City-Wide Coverage Analysis (§V-B & §V-C).** We conducted a city-wide outdoor drive-test coverage analysis of mmWave. Our survey finds that within an area of 2.23 km², even with a very dense deployment of mmWave 5G BSs (e.g., 34+ BSs with each BS having 1 to 3 antenna panels), operators can achieve a coverage of no more than 35%. Our

†These authors contributed equally to this paper.

Corresponding authors: arvind@cs.umn.edu, muhiqbulcr@uchicago.edu

This research was in part supported by NSF under Grants CNS-1618836, CNS-2128489, CNS-1814322, CNS-1836772, CNS-1901103, CNS-1915122, CCF-1903880 and a Cisco University Research Grant.

<table>
<thead>
<tr>
<th>5G BEAMS Dataset Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative distance 73.76 km+ (walk), 69.1 km (drive)</td>
</tr>
<tr>
<td>Cumulative time of traces 1260 minutes+</td>
</tr>
<tr>
<td># of commercial operators 2</td>
</tr>
<tr>
<td># of unique 5G PCIs OpX: 265, OpY: 105</td>
</tr>
<tr>
<td>Total area covered 2.3 km²</td>
</tr>
<tr>
<td>mmWave 5G-NR bands n260/39 GHz and n261/28 GHz</td>
</tr>
</tbody>
</table>

Having coverage does not necessarily translate to perceiving good network performance or throughput.
analysis is one of the first to conduct such a city-wide study to reveal the challenge of providing seamless mmWave 5G coverage in a large urban area. We also conducted controlled experiments in select regions within the city to reveal beam coverage maps in diverse environments.

- **Path loss in Different Frequencies & Environments (§VI).** We demonstrate a signal-strength based method to characterize propagation loss on receive signal power. We show that the path loss exponent (PLE) is relatively higher in NLoS environment than in LoS. We also quantify and show that 28 GHz signals has relatively lower PLE compared to 39 GHz.

- **Beam Selection Analysis (§VII-A).** We also empirically evaluate the beam selection mechanisms adopted by the operators. In open fields with not much signal reflection, operators deploy mmWave BSs with overlapping footprints to compensate the inability to establish NLoS path. In such areas, operators generally are able to select the best beam as the serving beam. However, in an urban canyon which has a mix of both NLoS and LoS path to BSs, operators on an average select beams with degraded quality (~3.6dBm). This is due to the highly dynamic environment coupled with the known sensitivity of mmWave signal propagation.

- **Throughput Performance. (§VIII).** Using the differences in the deployment parameters of the two operators, we proceed to understand its impact on throughput performance. We observe that higher channel aggregation and wider Tx beam contributed to an increase in median throughput. However, the throughput gain is reduced at a distance compared to narrower Tx beam which performs consistently at all distances. We also conducted congestion experiments with multiple UEs connected to the same beam and observe a persistent pattern of uneven throughput performance between the UEs.

- **5G Beams: An Open and Real 5G mmWave Dataset (Tables I & II, §IV).** A lack of wide-scale deployment of mmWave 5G, high-cost of tools/license to access low-layer information, need to conduct on-field experiments are just few of the challenges faced by the research community to conduct 5G research on real deployments. We believe the research opportunities provided by 5G Beams dataset is beyond the scope of the topics studied in this paper and have therefore released it to the public. The URL of our dataset is:

https://5gbeams.umn.edu

The paper is organized as follows: Section II provides a quick primer of beam management in 5G mmWave. Section III discusses related work. Section IV describes the measurement tools and methodology used in this study. Section V provides an overview of the two operator deployments as well as provides insights about their coverage. In Section VI, we present details about our measurement-driven analysis and findings of signal propagation. In Section VII, we conduct empirical analysis of the beam selection strategy observed in the data collected from the two 5G operators and provide key insights. Section VIII presents throughput analyses and results with multiple devices, and conclude in Section IX.
frequency channels, number of Tx and Rx beams, beamwidth, path loss between Tx and Rx, interference management (based on RSRP/RSRQ), and congestion. The choice of different beam configuration parameters will affect the network throughput, latency, and range. In this work, we perform detailed measurements of mmWave in 5G deployments and study their beam management (adjustment).

III. Related Work

We discuss two categories of mmWave research that are relevant to our work: (i) research using theoretical methods and controlled experimental setups, and (ii) measurements conducted using commercial deployments.

A. Theoretical and Controlled Experimental Research

Wireless systems in the mmWave band have been an active area of research for a number of years. Most existing literature discusses the feasibility [14], design [15], and deployment challenges [16]. There are a number of contributions that perform theoretical studies, modeling and simulations on beam management [10]–[12] and beam selection algorithm [13], [17], [18]. Authors in [14] provide a comprehensive overview of emerging 5G mmWave propagation characteristics, including the free-space path loss, material penetration loss, rain and foliage induced attenuation, atmospheric induced attenuation, and other propagation factors. In [12], [13], the authors provide an overview of 5G standardization approaches to beam management procedures for different network architectures (standalone and non-standalone) and signal transmission directions (downlink or uplink). The authors showed that there exist trade-offs between better detection accuracy, improved reactiveness and reduced overhead in beam management. However, most of the analysis and theoretical modeling in the literature do not adequately answer all the questions that need to be addressed in real-time deployments, such as: what should the practical inter-distance between two mmWave BSs be, what role does path loss play in beam selection mechanism, what is the trade-off between number of Tx and Rx beams, do more antennas imply higher throughput, do more beams lead to more inter/intra-beam handover or latency?

B. Research on Commercial mmWave Deployments

Since mmWave deployments, especially commercial cellular ones, are fairly recent, the literature on results obtained from studying actual deployments is fairly limited. Authors in [19] explored mmWave usage beyond serving the end-users and demonstrated four novel use cases: 28 GHz as a backhaul point-to-point link, 60 GHz unlicensed access with edge computing, mmWave mesh networks for cost-effective backhauling of small-cell BSs in dense urban scenarios, and automated driving enabled by mmWave-based Vehicular-to-Vehicular (V2V) and Vehicular-to-Everything (V2X). In our previous work [20], we captured the network performance of 5G’s very first commercial mmWave deployments. Further, [21] using commercial 5G services studied the power consumption characteristics as well as application QoE on smartphones. Finally, in [22], we seek to use user-side factors to characterize and predict the application-level throughput of 5G mmWave transmission at the client device using machine learning techniques. However, due to their inability to access the control plane messages and chipset logs, none of these studies had visibility into the lower-layer information thus were unable to provide insights on the beam management aspects of commercial mmWave-based 5G deployments.

With the access to tools that provide visibility into both the upper and rich lower-layer messages, coupled with a systematically devised measurement methodology involving diverse locations, we collect real-world data of 2 mmWave 5G operators. We analyze mmWave channels and propagation, deployment parameters, beam management, beam selection, beam-to-beam handover, etc. and the impact of these on end-user’s network performance.

IV. Measurement Tools and Methodology

A. 5G Operators and Locations

In this measurement study, we pick the city of Chicago where two 5G operators: OpX (Verizon) and OpY (AT&T) have deployed mmWave-based 5G service (in non-standalone or NSA mode) commercially. To better understand the impact of the surrounding environs on beam management and signal propagation, we surveyed the area of Chicago Loop and carefully pick two regions with diverse environmental characteristics (1) BP– the Upper Hutchinson Field Baseball Park (near E Balbo Dr & S Columbus Dr) representing an open field space, and (2) DT– DownTown Chicago (W Adams Blvd & S Lasalle St to W Jackson Blvd & S State St) representing an urban canyon surrounded by tall buildings on both sides of the road with high pedestrian and vehicular traffic. More details about the measurement methodology, the data collected as well as an overview about the operator’s deployment is presented later (see §IV-C, §V-A and Table III for details).

B. 5G Smartphones and Measurement Tools

The 5G mmWave network is designed to support ultra-high throughput. For instance, recent studies have shown that commercial mmWave operators can support a downlink throughput of ~2 to 3 Gbps [20], [21]. To ensure that the end-user’s smartphone device does not become a bottleneck in supporting such high bandwidth, we use 3× state-of-the-art Samsung Galaxy S21 Ultra 5G (S21) smartphones as (SM-G998U1) the user equipment (UE). This model is equipped with the Qualcomm Snapdragon 888 (SM8350) chipset with X60 modem [23] to handle 5G in the low, mid, and mmWave bands. On the mmWave bands, it is capable of receiving up to 8 Tx beams using 2 Rx beams, utilizing up to 8 × 100 MHz wide channels.

In order to understand the beam management and signal propagation characteristics of commercially deployed mmWave 5G networks, access to PHY, MAC, RRC layer messages (received or sent by the UE) is critical. However, Android APIs do not provide such information. Accessing lower-layer information requires access to Qualcomm Diag
TABLE II: Fields captured in the 5G BEAMS dataset.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude, Longitude</td>
<td>UE’s geographic coordinates and estimated accuracy from the Android API</td>
</tr>
<tr>
<td>PCell PCI</td>
<td>Primary cell PCI for LTE/NR cell</td>
</tr>
<tr>
<td>SCellPCI</td>
<td>Secondary cell PCI for LTE/NR cell [x = 1 ~ 7]</td>
</tr>
<tr>
<td>RSRP/RSRQ*</td>
<td>Signal strength values for LTE and NR PCell/SCell</td>
</tr>
<tr>
<td>Pathloss</td>
<td>Path Loss b/w Tx and Rx for NR PCell/SCell</td>
</tr>
<tr>
<td>UL, DL</td>
<td>Absolute radio-frequency channel number used in uplink and downlink for NR PCell/SCell</td>
</tr>
<tr>
<td>NR-ARFCN</td>
<td>UL/DL physical throughput for LTE and NR PCell/SCell</td>
</tr>
<tr>
<td>PDSCH/PUSCH Throughput</td>
<td></td>
</tr>
<tr>
<td>Beam SSB Idx*</td>
<td>SSB (Secondary Synchronization Block) Tx/Rx beam index for NR Cell</td>
</tr>
<tr>
<td>Best Beam Idx</td>
<td>Tx beam index of dominant beam (highest RSRP) on serving cell</td>
</tr>
<tr>
<td>Best Beam State</td>
<td>Status of whether serving beam has the best RSRP over all possible beams (serving + neighbor)</td>
</tr>
<tr>
<td>Beam Switch Delay</td>
<td>Delay time when switching between beams on the same or different PCI</td>
</tr>
</tbody>
</table>

* these fields are also captured for neighbor (non-serving) cells and per beam for mmWave NR

(or the diagnostic interface), which needs special licenses and tools. We therefore rely on a professional tool called Accuver XCAL which has access to Qualcomm Diag. This tool runs on a laptop and can simultaneously collect the lower (and higher) layer information from up to 4 smartphones concurrently. These smartphones are tethered to the laptop running XCAL using USB cables. Table II provides a summary of a subset of fields captured by the XCAL measurement tool.

C. Data Collection Methodology

We focus our measurement campaign on two regions. The first region is BP, a baseball park with large open fields spanning an area of approximately 17,170m². Fig. 2a depicts this park where OpX has deployed 3 mmWave BSs. Each BS was equipped with 3 directional mmWave transceivers. In order to understand the coverage of OpX within the baseball park area, we constructed two patterns of walking trajectory (see Fig. 2a): (1) a rectangular spiral pattern and (2) a zig-zag pattern which respectively took ~27 mins (~2.2km long) and ~55 mins (~4.6km) to complete a single route. We repeatedly walked pattern (1) in a clockwise and anti-clockwise directions for 3 times each, and pattern (2) in two opposing diagonals (i.e., NW→SE and NE→SW) for 2 times each. The second region is DT, a section of downtown Chicago region that is surrounded by tall buildings, restaurants, tourist hotspots, etc., with high pedestrian as well as vehicular traffic. Both OpX and OpY have fairly dense 5G mmWave deployments in this area. We pick a 970m walking route in this region that passes through the coverage of both operators. We completed 9 walking loops of the route in an anti-clockwise direction. Fig. 2b depicts the walking route in DT as well as the location of the BSs. These two regions are particularly useful for this study from two perspectives. First, it allows us to compare the two and understand the impact of the environment characteristics on beam management and signal propagation. Second, the DT region allows us to compare the same between the two operators who have different deployment parameters as described in the next section.

In both regions, we use X-CAL to passively collects all the lower-layer information, and run two types of active experiments: (1) Ping – measures the round trip latency every second with the target set to a Google DNS server (8.8.8.8), and (2) HTTP – download a large YUV data blob over HTTPS [24] (and repeat if the download is complete). For understanding beam management and coverage, the Ping-based measurements helped us ensure the 4G and 5G radios always remain in the RRC_CONNECTED state, thus avoiding any fallback to 4G due to data inactivity. HTTP-based measurement is used to understand the implications of beam management and configuration over network performance (e.g., downlink throughput). Table I provides a statistical summary of our collected dataset over the full campaign at Chicago. In this work, we particularly only focused on data collected on foot.

V. OVERVIEW OF OPERATORS AND DEPLOYMENTS

A. Deployment Parameters used by OpX and OpY

Table III summarizes several parameters observed in the data collected from our coverage analysis of Chicago city for
TABLE III: mmWave Deployment Parameters (as of June’21).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>OpX</th>
<th>OpY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio Make</td>
<td>Ericsson</td>
<td>Samsung</td>
</tr>
<tr>
<td>Radio Model</td>
<td>AIR 5121/7601</td>
<td>HTS5101/60A</td>
</tr>
<tr>
<td># of Antenna Panels</td>
<td>2 to 3 per BS</td>
<td>2 per BS</td>
</tr>
<tr>
<td>PCI Assignment</td>
<td>1 per panel</td>
<td>1 per BS</td>
</tr>
<tr>
<td>Max. Ch. Agg. (CA)</td>
<td>4 or 8 channels</td>
<td>8 channels</td>
</tr>
<tr>
<td>Max. # of Tx Beams</td>
<td>13 per PCI</td>
<td>56 per PCI</td>
</tr>
<tr>
<td>5G Deployment Model</td>
<td>NSA</td>
<td>NSA</td>
</tr>
<tr>
<td>5G-NR Band</td>
<td>n261, n260</td>
<td>n260</td>
</tr>
<tr>
<td>LTE Anchor Band</td>
<td>Band 2, 5, 66</td>
<td>Band 2 & 66</td>
</tr>
<tr>
<td>Ch. Width</td>
<td>100 MHz</td>
<td>100 MHz</td>
</tr>
<tr>
<td>Sub-Carrier Spacing</td>
<td>120 kHz</td>
<td>120 kHz</td>
</tr>
</tbody>
</table>

Both OpX and OpY. The key differences between the two operators include: (i) **PCI assignment**: OpX has a unique PCI for every directional panel (e.g., if a single BS has 3 panels, we observe three unique PCIs) whereas OpY has one per BS; (ii) **number of Tx beam indices**: OpX uses fewer beam indices (13 per PCI or 26 for a BS with 2 panels) compared to OpY (56 per PCI/BS). This observation suggests OpX uses wider beams than OpY; (iii) **5G-NR band**: OpX uses both 28 GHz and 39 GHz in DT and only 39 GHz in BP while OpY uses only 39 GHz in DT. All BSs of both operators in DT use carrier aggregation (CA) to aggregate a maximum of 8 mmWave channels (1 primary and up to 7 secondary channels), each 100 MHz wide. We also find that depending upon the location (or radio model and/or hand), OpX might either aggregate a maximum of 4 or 8 channels. OpY was observed to support up to 8 aggregated channels. With majority of our HTTP-based experiments (that saturated the downlink capacity) focused in the DT and BP regions, we observe that OpX aggregated up to 4 channels in 28 GHz and up to 8 channels in 39 GHz. OpY was observed to support up to 8 aggregated channels.

Fig. 3: Outdoor mmWave coverage around Chicago Loop area.

B. City-Wide mmWave Coverage Analysis

In order to understand the outdoor coverage of mmWave, we drove at low-speeds (<25km/hr) through the Chicago Loop area and its surroundings with two UEs (each equipped with a carrier’s sim) mounted on the car’s windshield. Fig. 3 shows the NR-band mapping. Our survey finds that OpX is able to provide mmWave connectivity to the UE for ~41% of the time during the entire drive session, while OpY provides ~33%. Of course, connectivity to mmWave also depends on how densely the operators have deployed their mmWave base stations as well as the signal propagation characteristics. While driving, to the best of our ability, we visually identify the mmWave BSs deployed by OpX and OpY and record its geographic locations. Our survey finds that within an area of 2.23 km², a minimum of 34 and 19 BSs were deployed (via visual survey) by OpX and OpY, respectively. The BSs were often mounted over poles. Note, each BS further has several antenna panels pointing at different directions. We found anywhere from 1 to 3 panels per BS. Our study exemplifies that even with such a dense deployment of mmWave base stations, operators can achieve no better coverage footprint of 35%, in absolute terms, 24.1 km out of 69.1 km. However, this is purely from connectivity perspective. Signal strength characteristics might widely vary which is described in later sections.
To summarize, in this section we presented an overview of the deployment parameters and coverage of real-world mmWave 5G deployments by two carriers. We also presented the beam coverage in both LoS and NLoS conditions. Next, we will dig deeper to understand the path propagation characteristics of mmWave.

VI. PROPAGATION ANALYSIS

Propagation measurements in mmWave have been conducted in multiple environments by a number of researchers, e.g., [7]–[9]. Most of these studies were carried out in a precisely controlled manner using high-fidelity channel sounding equipment that enables not only path loss measurements but also channel impulse responses when wideband channel sounding signals are used. These and many of similar measurements have formed the cornerstone of mmWave system development, including 5G. However, there is a dearth of measurement data on propagation in real-world environments using such as ones collected using commercial off-the-shelf (COTS) hand-held smartphones. Factors such as body-loss, hand obstructions on the receive antenna, foliage and building blockage have been considered in isolation but not in combination with real-world deployments and constraints. In this analysis, we use RSRP values recorded from the S21 smartphones running simultaneous Ping workload. Although the RSRP value may not be calibrated between the phones, they all uses the same modem chipset (see §IV-B for details). Thus, RSRP values recorded by the modem are assumed correct within the smartphone model (i.e., the same value will lead to the same behavior for all S21 smartphones).

Primarily imposed by the both the tool and the UE/smartphone, there are two main limitations in the measurements available to us for analyzing propagation: (i) it is unclear as to how the “path loss” measurement obtained from the tool is being computed, since the transmit power could vary with the use of power control. We have observed that the RSRP of the primary channel is always higher than the secondary channels, indicating a higher transmit power. Furthermore, the combined RSRP from the two receive beams on the phone is used to compute the path loss, not the RSRP on each individual receive beam, and (ii) we compute distances based on the GPS coordinates available from the phone, which have an inherent inaccuracy exacerbated by tall buildings in the DT location. With these constraints, it is impossible to “fit” the path-loss measurements to any of the well-known path-loss models [6]. Instead, since the RSRP calculation is well-defined, we focus on the RSRP measurements on a beam-pair level to perform relative comparisons of RSRP using the approach in [9] where a floating intercept model is used:

\[
\text{RSRP}[^{\text{dB}}] = \alpha + 10\beta \log_{10}(d) + X_{\sigma} \tag{1}
\]

where \(d\) is the distance in meters, \(\alpha\) is the intercept in dB, \(\beta\) is the slope, and \(X_{\sigma}\) is a zero mean Gaussian random variable with a standard deviation \(\sigma\) in dB. It should be noted here that \(\beta\) should not be considered as the path-loss exponent (PLE) since the intercept \(\alpha\) is not the reference power at the reference distance of 1 m that is commonly assumed for
mmWave propagation. Instead, \(\alpha \) includes all contributions due to frequency dependence, Tx and Rx antenna gains, clutter, body loss, foliage, etc. However, \(\beta \) can be used to make relative comparisons as will be described later. The RSRP analysis in this section is based on observations made over the primary channel from the data collected using the Ping-based measurements. We fit the linear model described above to the RSRP for every Tx-Rx pair, where each Rx beam is considered separately.

A. RSRP vs. Distance for OpX in BP

As shown in Fig. 2a OpX has deployed 3 BSs in the BP location, with PCIs 322, 327 and 333 providing coverage footprint to the inside of the baseball field. PCI 322 is partially obstructed by foliage (NLoS) while the other two PCIs are less obstructed. Fig. 7a shows the RSRP vs distance performance of PCI 322 where the scatter plot of all individual Tx-Rx beam pairs (not just the best beam pair) is shown, along with the best linear fit. Fig. 7b shows the best-fit line computed similarly for all three PCIs in that location. As mentioned above, we can use the relative difference in the slopes, \(\beta \), of these three PCIs in the same area to conclude that the obstructed PCI, PCI 322, has a higher PLE than the other two PCIs in the area.

B. RSRP vs. Distance for OpX and OpY in DT

We combine the RSRPs for each Tx-Rx pair through the entire DT area for OpX in 28 GHz and 39 GHz and OpY in 39 GHz over all deployed PCIs. Fig. 7c shows the performance. OpX at 28 GHz has a lower slope (smaller PLE) compared to 39 GHz, due to the frequency difference, while OpX at 39 GHz exhibits a slightly higher slope (larger PLE) compared to OpY which could be due to the use of wider Tx beams leading to less power received at the same distance. However, overall there is not a significant difference at 39 GHz between the two operators since the deployment environment is basically the same.

VII. BEAM SELECTION ANALYSIS

A. LoS vs. NLoS: Beam Selection

To better understand the impact of environmental features (e.g., open-space vs. urban canyon), Fig 8 compares the RSRP of the serving beam between BP (LoS) and DT (NLoS+LoS). Overall, we find the RSRP at BP (which, except PCI 322, mainly propagates via LoS to UE) is higher by 3 to 4 dBm when compared to DT which is a mix of LoS and NLoS.

When selecting the serving beam especially under situations where multiple PCIs (or beams) can cover the same geographic region or when the UE is on the move, operators have to track the UE’s location and perform beam switching. To better understand the beam selection strategy used by the operator, we select several metrics (e.g., RSRP, RSRQ, CSI, etc.) of the serving beam and compare it against that of the neighboring beams (up to 3, which can be from same or different PCI) as seen by the UE. We find that in general, operators use RSRP to make beam selection. We therefore use RSRP for further analysis on evaluating the beam selection strategies deployed by both the operators. We also compare the Serving Beam’s RSRP with the Best Beam\(^3\) as reported in the Qualcomm chipset’s ML1 Searcher Measurement log messages.

As discussed earlier, BP represents an open field (with high density of people during events) providing less opportunity

\(^3\)Details on how Qualcomm decides which beam is the best is not fully known. Our correlation analysis suggests this to be chosen from the beam with the highest instantaneous RSRP measured by the chip.

Fig. 7: Line fitting of RSRP vs. distance.

Fig. 8: CDF: LoS vs. NLoS

Fig. 9: OpX: UE @ BP prefers PCI (and Beam) with LoS.
for establishing NLoS paths between the BS and UE. Not surprisingly, in BP we find OpX has deployed multiple PCIs with overlapping coverage footprint and depending upon the UE’s moving direction, the UE gets connected to the PCI with LoS. For instance, the patch illustrated in Fig. 9a falls under the footprint of all the three PCIs. The bearing (or azimuth) angles which represents the direction of UE’s mobility shows distinct density distributions when connected to PCI 327 versus PCI 333. In terms of how well an operator performs in selecting the best beam as the serving beam, Fig. 10a shows that in BP (or under LoS conditions), the Best beam clearly match the Serving beam. On an average, the selected beam is also 14.4 dBm higher than the Neighbor Top 1 beam. This suggests, operators show the ability to in general select the best beam under LoS. Note, selecting the best beam does not always result in better coverage especially in open space settings with limited to no scope of signal reflection.

On the other hand, Fig. 10b (and Fig. 10c) show the RSRP at the DT (i.e., LoS + NLoS environment), on an average there is a degradation of 3.6 dB of the Serving beam’s RSRP when compared to that of the Best beam. Nonetheless, our study highlights and quantifies the challenges faced by operators which could have several implications on network and application performance. Clearly, differences in the environmental features has an impact of signal reflection and propagation. Such impact is known but challenging to quantify especially in the-wild. We believe our initial analysis on beam selection features has an impact of signal reflection and propagation.

TABLE IV: Beam switching statistics at DT.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Intra-BS Beam Switch</th>
<th>Inter-BS Beam Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Switch. interval</td>
<td>Delay (s)</td>
</tr>
<tr>
<td>OpX-28 GHz</td>
<td>6.99 s</td>
<td>0.16</td>
</tr>
<tr>
<td>OpX-39 GHz</td>
<td>7.018 s</td>
<td>0.35</td>
</tr>
<tr>
<td>OpY-39 GHz</td>
<td>1.29 s</td>
<td>0.2</td>
</tr>
</tbody>
</table>

VIII. PERFORMANCE ANALYSIS

A. Throughput Comparison at DT

Fig. 12 shows the throughput CDFs of OpX and OpY at 39 GHz and OpX at 28 GHz in DT for all data and separated by $d < 100m$ and $d > 100m$, with d as the distance between BS and phone. There are a number of interesting observations we can draw from these results:

1) **OpX’s maximum throughput over all data** is lower than OpY’s in both bands. This is due to 2 reasons: (i) Fig. 11 shows that OpX aggregated a maximum of 4 channels at 28 GHz compared to 8 by both operators at 39 GHz, and (ii) we see from the deployment map in Fig. 2b that OpX’s 39 GHz BSs are much farther apart than OpY’s. In fact, it is rather curious that OpX has deployed their 28 GHz BSs closer together than the 39 GHz BSs: given the theoretical difference in path loss at these 2 frequencies (corroborated in Fig. 7c), it should have been the other way around.

2) **OpX’s median throughput over all data** at 39 GHz is higher than OpY’s. Fig. 11 show that this is due to OpX at 39 GHz aggregates 8 channels at 88% of the time compared to OpY at 62%. Also, OpX’s median throughput is dominated by the data for $d < 100m$, i.e., the increased carrier aggregation outweighs the reduced RSRP due to distance.

3) By comparing OpY’s throughput between $d < 100m$ and $d > 100m$, we see that the throughput distribution is relatively
unaffected by distance. This is due to the average distance between their BSs being less than OpX at 39 GHz.

Fig. 13 shows throughput from a 5 minutes section of the measurements, which starts from LaSalle & Jackson and ends at State & Jackson. Clearly, the denser deployment of OpY (3 BSs) leads to more uniform and higher throughput over that region, with the best throughput achieved by OpY's PCI 686 due to the LoS environment surrounding the BS.

B. Congestion Experiment at BP

We exploit the stable LoS condition of BP for a multi-UE congestion experiment over static PCIs and beams. Three S21 smartphones are used (UE 1, 2, & 3) to initiate an iPerf3 [25] session to public cloud servers in Illinois and Minnesota. All sessions establish 8 TCP connections in parallel to saturate the downlink capacity. All UEs are handheld stationary at a distance of 50m from BS. Each phone started iPerf3 session one after the other, each with an interval of 1 minute. We performed 3 tests while varying the start order of UE’s transmission: UE 1→UE 2→UE 3, UE 2→UE 3→UE 1, and UE 3→UE 1→UE 2, i.e., a total of 9 runs.

Over the repetitions, we observe a similar trend: The first UE to start the transmission will have its throughput dropped lower than other UEs after a period of time. We pick a representative session and show the results in in Fig. 14. This figure shows the total DL throughput over all channels, the number of CA, primary channel RSRP, and linear sum of RSRP over all channels (summed in the milliwatt domain). We omitted RSRQ values, as there is no significant change in primary and secondary channels’ RSRQ. All UEs used the maximum number of RB with modulations of 64-QAM, 16-QAM, and QPSK used 86%, 13%, and 1% of all time, respectively. UE 1 starts with the highest throughput (~1.6 Gbps) with 4 CA. As the second UE becomes active at the 1-minute mark, UE 1’s throughput drops to 260 Mbps (1 CA). In the RSRP domain, there is no change in primary RSRP. However, we observe a reduction in the linear sum RSRP, indicating a lower overall channel condition. For the next minute (i.e., 120s to 180s), UE 2 started with an average throughput of 850 Mbps followed with small decrease as UE 3 becomes active. UE 2’s throughput further decreased to 165 Mbps at the 3 minute mark due to reducing to 1 CA.

However, the black-box nature of real-deployment measurement still prevents us from further exploration since we lack detailed BS information. With limited visibility only from the UE’s perspective, we can only attribute the throughput degradation to BS not serving more channel. However, our research reveals opportunity lie in understanding how operators/vendors deploy mechanisms related to deciding whether to use channel aggregation and at what level, and evaluate its effectiveness.

IX. Conclusions and Future Work

We presented what we believe is the first measurement study of real-world 5G NR mmWave cellular networks with emphasis on understanding mmWave beam management. Using state-of-the-art measurement tools that collect both application layer as well as rich lower-layer information, and by carefully designing systematic measurement methodologies, we conduct field experiments in Chicago city involving two major 5G operators. We reveal the different deployment parameters used by the operators, provide interesting insights on the mmWave coverage as well as conduct a comparative study to reveal the relative importance of the configuration parameters on beam management, signal propagation characteristics and network performance. We hope that these insights from in-situ measurements will benefit the broader researcher community’s efforts in understanding and improving mmWave performance in diverse deployment scenarios, far beyond the scope of the topics studied in this paper. The authors have provided public access to their data at https://5gbeams.umn.edu.
REFERENCES