
Wixor: Dynamic TDD Policy Adaptation for 5G/xG Networks
AHMAD HASSAN∗, University of Southern California, USA
SHIVANG AGGARWAL, Hewlett Packard Labs, USA
MOHAMED IBRAHIM, Hewlett Packard Labs, USA
PUNEET SHARMA, Hewlett Packard Labs, USA
FENG QIAN, University of Southern California, USA

In the era of 5G and beyond, dynamic Time Division Duplex (TDD) has become essential for supporting
applications that demand high bandwidth and low latency. Emerging uplink-intensive use cases such as
real-time video analytics, autonomous vehicles and augmented reality further complicate the balance between
uplink and downlink resources. Despite their potential, TDD policies employed by current 5G networks remain
underexplored. Our investigation reveals that existing TDD policies are static and predominantly downlink-
focused, failing to adapt to fluctuating network demands. We introduce Wixor, a robust dynamic TDD policy
adaptation system tailored for 5G and next-generation (xG) networks. It proactively adjusts the allocation
of TDD resources between uplink and downlink, addressing various practical challenges. Prototyped on a
programmable testbed,Wixor demonstrates substantial performance improvements across diverse applications,
achieving up to 96.5% enhancement in Quality of Experience (QoE) compared to existing baselines.

CCS Concepts: • Networks→Mobile networks; Cross-layer protocols; Network measurement.

Additional Key Words and Phrases: 5G, TDD, Resource Assignment, TDD Scheduling, TDD Pattern

ACM Reference Format:
Ahmad Hassan, Shivang Aggarwal, Mohamed Ibrahim, Puneet Sharma, and Feng Qian. 2024.Wixor: Dynamic
TDD Policy Adaptation for 5G/xG Networks. Proc. ACM Netw. 2, CoNEXT4, Article 38 (December 2024),
24 pages. https://doi.org/10.1145/3696395
1 Introduction
5G NR heralds a new era of connectivity, promising unprecedented speeds and ultra-low latency.
These advancements are crucial for a wide range of applications, from immersive augmented
reality (AR) experiences [26, 28] and autonomous vehicles [51] to critical healthcare services [75]
and real-time video analytics [23, 53]. To meet the performance requirements of these emerging use
cases, more than 80% of the 5G operators have turned to Time Division Duplex (TDD) [11], whereas
previous technologies (e.g., LTE, 3G) mainly employed Frequency Division Duplex (FDD) [10].
TDD alternates uplink (UL) and downlink (DL) transmissions within the same frequency band
using time slots to enable flexible spectrum utilization and dynamic UL/DL resource allocation. To
accommodate different traffic patterns, 5G NR introduces dynamic TDD, where the base station
(BS) can dynamically change the distribution of UL and DL time slots, given a TDD policy [20].
∗Ahmad Hassan did this work as an intern at Hewlett Packard Labs.

Authors’ Contact Information: Ahmad Hassan, University of Southern California, USA, ahmadhas@usc.edu; Shivang
Aggarwal, Hewlett Packard Labs, California, USA, shivang.aggarwal@hpe.com; Mohamed Ibrahim, Hewlett Packard Labs,
New Jersey, USA, ibrahim@hpe.com; Puneet Sharma, Hewlett Packard Labs, California, USA, puneet.sharma@hpe.com;
Feng Qian, University of Southern California, USA, fengqian@usc.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2834-5509/2024/12-ART38
https://doi.org/10.1145/3696395

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

https://doi.org/10.1145/3696395
https://doi.org/10.1145/3696395

38:2 Ahmad Hassan et al.

Although the 3GPP specifications cover the mechanism for dynamic TDD, they leave the actual
TDD policy implementation open for network operators.

While conceptually reasonable, it remains unclear whether dynamic TDD can fulfill its prospects
in practice. To our knowledge, existing solutions focus on naive theoretical or simulation-driven
analysis [66, 67, 85] and niche prototype implementation [27]. They usually ignore the impact of
dynamic TDD on real-world applications’ Quality of Experience (QoE). Moreover, these studies fail
to consider the practical challenges in designing a dynamic TDD system capable of supporting a
large number of users, diverse channel conditions, and varying application workloads.
To this end, we conduct a timely measurement study of TDD policies employed by public 5G

networks and show their impact on the QoE of emerging applications (§3). We find that the BS
traffic load fluctuates rapidly and traditional “static” TDD policies fall short in adapting to it. This
leads to suboptimal performance, particularly for latency-sensitive and UL-intensive applications.
Additionally, our investigation reveals that straightforward TDD policies (e.g., a reactive policy
that uses the past traffic demand information to adjust UL and DL slot distribution) result in lost
performance compared to a proactive approach. Lastly, our experiments demonstrate that even the
arrangement of UL andDL time slots in a TDD policy has a non-trivial impact on the application QoE.
The goal of this work is to design a TDD policy that dynamically adjusts the distribution and

arrangement of UL and DL time slots for application QoE improvement without any QoE feedback
from the user entity (UE) or application server. This problem confronts several challenges. First,
the flexibility in defining TDD policies requires exploring numerous UL and DL slot arrangements,
making problem complexity a concern. Second, the rapidly fluctuating traffic load and channel
conditions must be taken into consideration. Third, limited information about application QoE
goals implies the lack of a well-defined optimization objective. Furthermore, frequent TDD pol-
icy adjustments can interfere with transport-layer congestion control or application-layer rate
adaptation logic. Lastly, the inherent asymmetry between UL and DL transmission (§3.3), with UL
typically experiencing higher latency and lower throughput, further complicates optimization.
To address the above challenges, we present Wixor, a practical TDD policy adjustment system

for 5G (xG) radio access network (RAN). Our system performs TDD policy adjustment at the last
mile BSs including private 5G deployments.Wixor reduces the problem complexity by breaking
it down into two parts. First, it predicts the UL and DL slot distribution through a proactive
demand customization engine (§5).Wixor employs a learning-based approach in combination
with BS-level features to handle the highly complex environment and manage the asymmetry
between UL and DL transmissions. Second,Wixor finds the best arrangement of UL and DL slots
given the slot distribution via a smart policy provision framework (§6). Due to the lack of QoE
information, our solution improves application performance indirectly by optimizing the radio
protocol layer Quality of Service (QoS) metrics. Further, it leverages a “conservative” TDD policy
smoothing technique to avoid abrupt policy changes, thus minimizing the interference with rate
adaptation modules. Our system is particularly useful for emerging private 5G (xG) applications
with stringent bandwidth and latency requirements – it offers configurable knobs to fine-tune UL
versus DL priority, and strike a balance between network bandwidth and latency.

We prototypeWixor on a programmable testbed with an open-source 5G cellular suite [16] in
total 2.3K+ lines of code.Wixor is fully 3GPP-compliant, making it readily deployable for any public
or private 5G operator. We carry out comprehensive evaluations in different settings (over-the-air
testbed, trace-driven simulations), with diverse channel traces (driving, walking, etc.), using real
application workloads (edge video analytics, live video conferencing, etc.), and several baselines
(e.g., a recently proposed dynamic TDD system [27]). We highlight experimental results as follows.
•We use a suite of six diverse apps to quantify QoE gains. Compared to baselines,Wixor improves
application QoE metrics by 2.5%-96.5%, or is within 91.6% of the best scheme (§8.2 & §8.3).

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

Wixor: Dynamic TDD Policy Adaptation for 5G/xG Networks 38:3

Fig. 1. 5G frame structure and TDD pattern for numerology 𝜇=1
and transmission periodicity 𝜏=2.5 ms. Each TDD pattern has 5
slots. S slots may contain DL, UL, and guard symbols. Fig. 2. Radio resource scheduling overview.

• Wixor is particularly useful under changing traffic loads and fluctuating channel conditions. For
example, compared to the walking scenario, it offers 3.2% and 15.3% higher average throughput
and latency improvement for driving (§8.4).
• Wixor respects the radio network’s optimization objectives, is lightweight and scalable, works
well under advanced BS configurations, and operates close to the optimal solution (§8.4 & §8.5).
2 Background & Related Work
2.1 A Primer on 5G
5G Frame Structure. Unlike 4G LTE, 5G New Radio (NR) has a flexible numerology and frame
structure. In 5G, numerology (𝜇 ∈ [0, 4]) enables various subcarrier spacings to meet different
service requirements. As illustrated in Fig. 1, the frame structure is hierarchical: a 10 ms radio
frame contains 10 sub-frames (1 ms each), and sub-frames are divided into 2𝜇 slots, with each slot
lasting 2−𝜇 ms. Each slot typically contains 14 OFDM symbols with a normal cyclic prefix.
5G NR TDD. TDD allows UL and DL transmissions to share the same frequency band but separated
in time. In the US, 5G operators use TDD inMid-Band (1-6GHz) andmmWave (24-40GHz) frequen-
cies [6]. Our work focuses onMid-Band TDD, common in private 5G deployments [3], though it
can be applied to mmWave as well. 5G NR defines three types of TDD scheduling: (i) static TDD
with fixed UL/DL time slots; (ii) semi-static TDD, which adapts to traffic patterns using higher-layer
Radio Resource Control (RRC) signaling; and (iii) dynamic TDD, the focus of our work, which
dynamically allocates UL and DL slots based on factors such as real-time traffic load. This dynamic
TDD approach is generic, encompassing the static and semi-static methods as special cases.
TDD Policy. A TDD pattern defines the allocation of time slots and symbols (S&S) for UL and DL
transmissions within a radio frame, as shown in Fig. 1. Transmission periodicity 𝜏 refers to the
repetition interval of a TDD pattern, typically in milliseconds (ms). Depending on 𝜇, each TDD
pattern consists of𝑇𝑠 = 2𝜇 ·𝜏 slots. Note that 𝜏 , and thus,𝑇𝑠 can change over time for a BS. A crucial
element in TDD is the guard period, which prevents interference between UL and DL transmissions
and accounts for propagation delays [29]. In 5G TDD nomenclature, a “TDD policy” refers to the
arrangement of S&Ss within a TDD pattern. The BS uses these S&S for UL/DL (data and control)
transmissions and guard periods. This paper aims to find an arrangement of UL and DL S&Ss (TDD
policy) that optimizes our objectives.While 3GPP specifications provide signaling mechanisms to
inform UEs about S&S allocation, the actual TDD policy algorithm remains open-ended.
TDDResource Scheduling. Fig. 2 provides an overview of the TDD resource scheduling procedure.
For the DL channel, UEs measure Signal-to-Interference-plus-Noise Ratio (SINR) and report Channel
Quality Indicator (CQI) values to the BS, while the BS directly measures each UE’s UL CQI. DL
data arrives in the Radio Link Control (RLC) per-UE queues, and UEs send periodic Buffer Status
Reports (BSRs) to inform the BS about the remaining UL data. Based on the TDD policy, CQI,
and outstanding data in UL and DL queues, the TDD MAC scheduler allocates OFDM symbols
among active UEs. Additionally, the scheduler uses CQI to determine the modulation and coding
scheme (MCS) which then determines the Transport Block Size (TBS) or data rate of the UE.
Traffic load versus BS throughput. The literature defines a BS’s traffic load in various ways, such
as the number of active UEs connected to the BS [74], the utilization of available radio resources [59],

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

38:4 Ahmad Hassan et al.

or the total volume of UL and DL data waiting to be processed [56]. We adopt the last definition as
it represents the actual data the BS needs to process. The BS throughput, however, refers to the
amount of data being transmitted (DL) and received (UL) by the BS at any given time.

2.2 Related Work
Dynamic TDD Schemes. Several past works propose dynamic TDD schemes for 5G/LTE net-
works [27, 31, 32, 35, 63, 69, 72, 73, 82]. DRP [27], a deep reinforcement learning-based scheme is the
closest to our work. DRP uses BSRs and DL buffer size to derive the optimal TDD pattern. However,
DRP has limited practical applicability due to its lack of consideration of (i) the space-time dynamics
of a wireless channel, (ii) diverse QoS/QoE requirements for different users, (iii) scalability issues as
it uses per-UE features, and (iv) other practical aspects such as S&S arrangement and guard periods.
Wixor, in contrast, considers all these practical concerns in its design. We experimentally compare
Wixor with DRP in §8. Other works focus on specific scenarios such as high mobility HetNets [72],
high density environments [73], massive IoT networks [63], small cell networks [35, 82], as well as
leveraging device-to-device communication [69], whereasWixor takes a more generic approach,
i.e., public and private 5G deployments.
5G/LTE resource scheduling. As discussed in §2.1, based on the TDD policy, the MAC scheduler
distributes the UL/DL resources amongst the UEs. The MAC layer scheduling problem has been
studied extensively in literature [22, 33, 34, 55, 81]. RadioSaber [34] and iRSS [81] solve it in the
context of network slicing. SMART [22] tackles the problem for massive MIMO networks, while
ELASE [33] and UQ-vRAN [55] focus on virtual RAN-based 5G networks. Our work, however,
solely focuses on the dynamic TDD adaptation problem, which is orthogonal to, and can work in
conjunction with, the MAC scheduling works described above.
Application-specific optimizations in cellular networks. Recently, a large body of work has
focused on improving the performance of specific applications over 5G/LTE/WiFi [25, 47, 58, 65,
71, 79]. For example, DChannel [65], Tutti [79], LRP [71], and Zhuge [58] boost the performance of
latency-critical applications such as video analytics, video conferencing, and cloud gaming over
5G/WiFi networks. These works rely on obtaining QoE information directly from applications,
while Wixor leverages the readily available radio protocol layer QoS metrics as indirect indicators
of application performance. Simply put,Wixor does not communicate with applications, making
it application-transparent. Furthermore, Wixor does not focus on any single application and is
designed to simultaneously improve the performance of various types of applications that may
have vastly different QoS objectives in terms of throughput, latency, etc.

3 Motivation & Challenges
3.1 Experiment Setup

Live 5G experiments. To characterize TDD polices employed by today’s 5G operators, we set up
a live 5G testing platform. Specifically, our setup employs the NG-Scope tool [78] to decode a BS’s
control channel information, e.g., TBS and MCS of all UEs connected to the BS. Simultaneously, we
utilize a Samsung Galaxy S22+ smartphone, connected to the same BS, to collect lower-layer TDD
configuration data with Accuver XCAL tool [19]. Overall, we collect 26 hrs+ of data, at different
hours of the day, with T-Mobile (Band 41 @ 2500 MHz), Verizon (Band 77 @ 3700), and AT&T (Band
77 @ 3700). We refer to the collected dataset as DL5G in the remainder of this paper.

Over-the-air 5G testbed. We build an in-lab end-to-end 5G network to run tests under several
controlled settings, e.g., TDD polices, applications, traffic loads, etc. The testbed comprises of 2×
Google Pixel 7 devices (PX7), a BS, and a 5G Core. The BS has two components: (i) an srsRAN-based
eNB/gNB stack running on a laptop equipped with Intel Core i7 @ 3.00GHz CPU, and (ii) an

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

Wixor: Dynamic TDD Policy Adaptation for 5G/xG Networks 38:5

Table 1. Application workloads used in our paper.
UL DLApp Name Lat. Sen. Bwd. Int. Lat. Sen. Bwd. Int.

Edge Video Analytics (EVA) ✓ ✕ ✓ ✕
Edge-assisted Vehicle Perception (EVP) ✓ ✓ ✓ ✕
Live Video Ingest (LVI) ✕ ✓ ✕ ✕
Video-on-Demand (VoD) ✕ ✕ ✕ ✓
Live Video Conferencing (LVC) ✓ ✕ ✓ ✕
HTTP File Transfer (HFT) ✕ ✓ ✕ ✓

Table 2. TDDpolices employed bymajor pub-
lic 5G operators in the US. Operators employ
almost identical policy parameters, assigning
72.8%–74.2% of the S&Ss to the DL.

Pattern 1 (UL/DL) Pattern 2 (UL/DL)Operator Band # slots # symbols # slots # symbols
T-Mobile n41 2/3 4/4 0/4 0/0

Verizon/AT&T n77 2/3 4/6 0/4 0/0

RF frontend based on USRP B210 [18] software defined radio (SDR) configured with Band 78 @
3410 MHz. The Open5GS Core Network (CN) [12] runs on another laptop. To conduct experiments,
we put our testbed in a 20m×12m conference room and walk randomly with PX7 in hand. All
applications are hosted locally with a 15 ms delay between the CN (packet gateway) and the
application server. For edge applications, the delay is 2 ms between the BS and the edge server. Both
servers run on separate desktop machines that have Linux kernel 6.2 and Intel Xeon CPUs with
64 GB RAM. We use ADB scripts to automate and time-synchronize experiments. All experiments
are repeated at least 5×.

Trace-driven simulator. We design a faithful simulator based on 𝑛𝑠3 5G-Lena [5] to: (i) carry
out experiments under reproducible channel and traffic conditions; and (ii) accelerate our system’s
model training. The setup (e.g., frequency band) is identical to the over-the-air testbed. Further,
we configure our simulator to utilize channel traces collected by previous 5G studies [37, 44, 61].
Overall, the traces consists of 18 hrs+ of SINR values, collected at TTI granularity. We generate 200
traces for our corpus, each with a duration of 300 secs. For each individual test, we randomly select
𝑛 traces for 𝑛 UEs from the corpus. Since these traces are collected in different mobility scenarios,
the heterogeneity and randomization ensures that the BS has UEs with diverse channel conditions.
Background traffic. Scaling the testbed for numerous devices generating realistic application

workloads is costly. Therefore, we generate UL and DL background traffic using real-world traffic
traces, postprocessed from NG-Scope (DL5G) TBS data to match our BS configuration. Each trace
contains UL/DL data from multiple UEs. To conduct an experiment, we randomly select a traffic
trace to simulate UL/DL UDP traffic between the UEs and the server. Since we only have two
PX7 devices in our testbed, we use the first one to send application traffic and the second one
to send/receive UDP background traffic for all UEs in the traffic trace. For the simulation setup,
however, we generate background traffic for the number of UEs specified in the trace.
Applications.We develop a suite of diverse (latency-sensitive and/or bandwidth-intensive in

UL/DL) apps for our over-the-air testbed and trace-driven simulator. Table 1 lists these apps, while
the detailed setup is outlined in §8.1.

3.2 Need for Dynamic TDD Policy Adjustment
Existing xG networks configure static, DL-biased TDD slot policies, incapable of adapting
to changing network loads. We leverage the 26 hrs+ long dataset DL5G to characterize how
frequently the traffic load changes and how the network reacts to it. Our analysis reveals four main
insights: (i) Fig. 3a shows rapid BS traffic load fluctuations, highlighting the need for a dynamic
TDD policy. The empirical CDF (e-CDF) of the rolled coefficient of variation (RCV1) for traffic load
with a 1 sec window size in Fig. 3b shows abrupt load changes for T-Mobile and Verizon, with the
median load increasing/decreasing 4.7-5.2 standard deviations above/below the average. (ii) Current
5G networks employ static TDD policies which are incapable of adapting to these load fluctuations.
Table 2 shows that major US network operators use similar, and more importantly static, TDD
policy parameters, regardless of the traffic load. Note that the 3GPP standards permit two TDD

1RCV measures the relative variability of a time-series over a specified rolling window. It is calculated as the standard
deviation divided by the mean within each window, i.e., (𝜎𝑡−𝛿𝑡 :𝑡)/(𝜇𝑡−𝛿𝑡 :𝑡) High RCV values (>1.0) indicate high relative
variability within the window (𝛿𝑡=1s), and vice-versa.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

38:6 Ahmad Hassan et al.

0 50 100 150

3 mins+ Timeline (secs)
(a)

0

100

200

B
S

L
o

a
d

(M
b

p
s)

0.0 2.5 5.0 7.5 10.0

RCV
(b)

0.00

0.25

0.50

0.75

1.00

e-
C

D
F

T-Mobile

Verizon

Fig. 3. The high variability in traffic
load from two public 5G networks.

300 250 200 150

Ingest Delay (ms)

2

4

6

8

10

S
en

d
in

g
B

it
ra

te
(M

b
p

s)

QoES1
S2
S3

S4
S5

Fig. 4. Comparing the impact
of static TDD policies on the
live ingest application’s QoE.

2ms 4ms 6ms
Inter-slot-delay

0

20

40

60

F
ra

m
e

L
a

te
n

cy
(m

s) 30-30

(a)

2ms 4ms 6ms

60-30

(b)

Fig. 5. Quantifying the impact
of inter-slot delay on EVA QoE.

patterns (pattern 1 and 2) for UL and DL S&S allocation. (iii) Existing networks have DL-biased
TDD policies. From DL5G, the median DL traffic load is 12.9× higher than UL. Networks allocate
the majority of TDD S&Ss to DL, as seen with T-Mobile assigning ∼72.8% to DL in Table 2. These
DL-biased policies are a bottleneck for emerging xG applications that require high UL bandwidth
and/or low latency. (iv) Despite predominantly DL-heavy traffic, 4.1% of instances in DL5G show
higher UL traffic loads, again underscoring the need for dynamic TDD policies.
Case study: To highlight the impact of static TDD policies on application QoE, we run a live video
ingest app on our over-the-air testbed. The first PX7 device runs the video ingest app, while the
second one generates background traffic using 15 random UE traces from DL5G (§3.1). We test five
different settings: (S1) UL and DL S&S assignment as per T-Mobile’s configuration (22.8% UL, 72.8%
DL), (S2) equal UL-DL S&Ss (47.8%, 47.8%), (S3) a “fair”2 UL-DL assignment based on average load
(67.4%, 28.2%), (S4) UL-dominant S&S assignment (72.8%, 22.8%), and (S5) our proposed dynamic
TDD solution. The remaining 4.4% of S&S are reserved for the guard period in S1-4.

Fig. 4 shows the sending bitrate and the ingest delay for each setting. Ingest delay measures the
time from frame generation to its quality variants being available for download [84]. Assigning
more resources to the UL results in higher QoE (notice that S3 > S2 > S1). However, ramping up
UL resources beyond a point will come at a cost of less DL resources, since the network has limited
bandwidth. This will cause the DL to become a bottleneck, leading to more buffering in DL queues
and longer ingest delays, as seen for S4. In contrast, our solution (S5) adapts to changing loads,
achieving 37.5% higher bitrate and 11.6% lower ingest delay than the next best setting (S3).
A reactive TDD slot adjustment policy is sub-optimal. A straightforward, naive solution to
the dynamic TDD policy adjustment problem is to adjust the DL and UL slot percentage based
on the past traffic load. However, as shown above (Fig. 3), the traffic load changes significantly
within short time periods, and TDD policy adjustment based on outdated traffic load information
can potentially result in performance loss. For applications in Table 1, a reactive approach incurs
significant QoE reduction compared to our proposed system (details in §8.2).
UL/DL S&S arrangement incurs additional complexity.We find that, in addition to the per-
centage of UL and DL S&S in TDD pattern, their arrangement can impact QoE too, especially
for latency-sensitive apps. Each S&S arrangement leads to a certain average delay between two
consecutive UL or DL slots (inter-slot delay). By keeping the background traffic rate (15 random
UE traces from DL5G) and the number of UL/DL slots constant, we test the Edge Video Analytics
(EVA) performance for different inter-slot delays (2ms, 4ms, 6ms) and traffic loads (30-30, 60-30). A
60-30 traffic load indicates a 60% UL and 30% DL traffic load. As shown in Fig. 5a, the average frame
response latency is 30.1 ms for a 2 ms inter-slot delay, increasing to 40.8 ms for a 6 ms delay (a
35.5% increase). Additionally, high traffic loads cause user data to buffer, further impacting response
latency (see Fig. 5b). Thus, the UL and DL S&S arrangement complicates deriving the optimal TDD
policy, with possible configurations ranging from hundreds to thousands.

2UL needs more resources than DL to provide a same level of throughput; that is why a fair static policy will have more UL
S&S than the UL traffic load ratio.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

Wixor: Dynamic TDD Policy Adaptation for 5G/xG Networks 38:7

3.3 Challenges
Scalability. 5G NR enables the BS to flexibly define a TDD policy where the arrangement of
S&Ss within a TDD pattern is crucial for optimizing application performance (§3.2). However, this
flexibility introduces a new challenge: we must exhaustively explore all possible combinations of
UL and DL S&S arrangements to identify the optimal TDD pattern, which can be computationally
intensive. For example, numerology 𝜇=1 results in over 1450 unique S&Ss arrangements.
Highly dynamic environment.Many factors render the TDD policy adjustment problem complex:
(i) the UL and DL traffic load changes frequently and straightforward solutions (e.g., Static and
Reactive) do not work well (§3.2). Additionally, traffic load is hard to predict; (ii) application
workloads are highly diverse in a radio network ecosystem, and the BS lacks information on QoE
goals and feedback from UEs or application servers; and (iii) channel conditions fluctuate rapidly
making the problem even more complex. Channel conditions (measured through metrics such as
SINR) determine the effective data transmission rate that dictates the optimal TDD policy.
Interference with rate adaptationmodules. Frequently changing the TDD policy can disrupt the
transport-layer congestion control or application-layer rate adaptation. To illustrate this, we use the
same over-the-air testbed setup as above with a TCP sender (default Cubic congestion control [41]).
The TDD policy is adjusted every second using Oracle (details in §8.5). Fig. 6 shows a UE’s UL
TCP congestion window (𝑐𝑤𝑛𝑑) alongside the TDD policy (% of UL TDD S&S). At the 8𝑡ℎ sec, the
UL S&S % drops from 61.8% to 42.1%, causing packet buffering, a TCP timeout, and a reduction in
𝑐𝑤𝑛𝑑 . However, before the TCP sender restores 𝑐𝑤𝑛𝑑 , another drop in UL S&S leads to another
reset. This creates a significant gap between the instantaneous demand and achieved throughput,
as seen in the shaded region of Fig. 6, hindering rate adaptation and, ultimately, throughput.
Asymmetric UL and DL transmission. Our investigation reveals a discrepancy between UL and
DL latency, in addition to throughput differences. Intuitively, one-way latency should be similar
in both directions. However, over-the-air testbed experiments with equal UL and DL S&Ss show
that UL is almost 40% slower than DL at low sending rates (see Fig. 7). Additionally, the UL latency
inflates quickly (due to bufferbloat [39] or limited radio resources [65]) once the sending rate
exceeds the link capacity. Our public 5G experiments reveal similar insights. Factors such as limited
UE transmission power [36], delays from UL scheduling grants [54], lower carrier aggregation [62],
and the use of SC-FDMA for power efficiency [24] contribute to less performant UL.

4 Wixor Design
To address the challenges outlined in §3.3, Wixor employs a two-stage approach to TDD policy
adjustment. First, it predicts the UL and DL S&S distribution (percentages) based on the BS context
such as traffic load and channel quality. Once the distribution is determined, Wixor finds the
best S&S arrangement. This decomposition significantly reduces the search space compared to
an exhaustive search method, evaluating only 5-25 arrangements for 𝜇=1 (a 58-290× reduction).
While this two-stage approach may incur slight performance losses if the initial prediction is
inaccurate – especially when relying on fixed models that do not generalize well to complex RAN
environments – Wixor mitigates this risk by employing a learning-based approach in combination
with BS-level features. This approach effectively manages the complexity of the environment and
the asymmetry between UL and DL transmission. Additionally, the system utilizes a conservative
policy smoothing technique to prevent abrupt policy changes, thereby minimizing the interference
with transport-layer congestion control and application-layer rate adaption logic.

The basic operation of Wixor is illustrated in Fig. 8. In the UL direction, UEs request radio
resources from the BS, obtain the allocated UL resources, and transmit the data, which is then
forwarded to the Internet. Conversely, in the DL direction, the incoming data arrives into the

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

38:8 Ahmad Hassan et al.

0 2 4 6 8 10

10+ Seconds Timeline (secs)

0.0

0.8

1.7

2.5

C
W

N
D

(M
B

)

33.0

44.7

56.3

68.0

%
o

f
U

L
S

&
S

s

Fig. 6. Impact of frequent
TDD policy updates on TCP’s
congestion control logic.

2 8 32 128

Sending Bitrate (Mbps)

10

20

40

80

160

O
n

e-
w

ay
L

a
te

n
cy

(m
s) Uplink Downlink

Fig. 7. Comparing one-
way UL and DL latencies
for testbed (log-scale). Fig. 8. A high-level overview of Wixor.

per-UE queues, and the BS transmits it to UEs. In the above process, ensuring that the BS effectively
balances available TDD S&Ss between UL and DL such that UEs receive sufficient resources promptly
is the key to improving application QoE.Wixor operates as a lightweight service at the BS to ensure
TDD policy adjustment in a timely manner.

To this end, Wixor leverages the traffic, BS load, channel quality, and QoS features (readily
available at the BS) as the system inputs, and outputs the TDD pattern to guide the BS’s TDD
policy adjustment via two major modules: (i) A proactive demand customization engine (§5) to
precisely predict future UL and DL resource demands. Specifically, it utilizes cross-layer BS-level
features to capture the RAN context (§5.1). Wixor then feeds these features into the context-aware
resource forecasting module (§5.2), which outputs the S&S percentage allocations for UL and DL.
(ii) Wixor drives a smart policy provision framework (§6) to ensure that the TDD policy is
configured reliably for application QoE improvement. It first applies conservative policy smoothing
to reduce the impact of abrupt TDD policy changes on application QoE (§6.1). Then, the QoS-aware
TDD policy derivation module (§6.2) computes the final arrangement of UL and DL S&S within the
TDD pattern. In doing so, it judiciously balances the trade-off between the inter-slot delay (which
impacts network latency) and guard period overhead (which impacts network throughput).

5 Proactive Demand Customization
Wixor first constructs BS-level features from raw BS logs (§5.1). These features are then passed to a
reinforcement learning (RL) agent to forecast future traffic demand (§5.2). The RL agent employs a
neural network (NN) to interpret the RAN context, represented by the BS-level features. Training
the RL agent in a live 5G environment is impractical due to the random exploration required by
RL, which would significantly impact application QoE. Therefore, we train Wixor’s RL agent using
a faithful simulator with real-world traffic and channel traces (§3.1). Wixor’s RL agent utilizes
normalized features to ensure seamless transferability from simulation to over-the-air setups.

5.1 Cross-layer BS-level Feature Engineering
We considered two choices for feature engineering: per-UE features and BS-level features. Per-UE
features can precisely characterize the behavior of all 𝑛𝑡 active users at time 𝑡 , but they have
practical issues. First, the dynamic nature of user presence in the RAN ecosystem causes significant
variation in 𝑛𝑡 over time. Handling this variation would require the NN to process variable-sized
inputs, leading to scalability issues. Second, the number of NN inputs scales with 𝑛𝑡 , affecting its
learning ability (curse of dimensionality). In contrast, BS-level features aggregate per-UE features
to represent overall UE behavior at the BS. They mitigate the scalability issue as the NN inputs
are fixed-size regardless of 𝑛𝑡 . However, engineering meaningful BS-level features without losing
critical information is challenging. We address this by using statistical measures to aggregate
per-UE features into a comprehensive yet practical representation of the BS state. In §7, we detail
howWixor collects raw BS logs from different radio protocol stack layers to compute these features.
(i) Traffic demand features. These features help Wixor understand the traffic demands of active
users 𝑛𝑡 . We concatenate average buffer occupancy levels 𝐵𝑢𝑡 and 𝐵𝑑𝑡 , maximum buffer levels𝑀𝑢

𝑡

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

Wixor: Dynamic TDD Policy Adaptation for 5G/xG Networks 38:9

and𝑀𝑑
𝑡 , traffic arrival rates 𝐴𝑢

𝑡 and 𝐴𝑑
𝑡 , and head-of-line delays 𝐻𝑢

𝑡 and 𝐻𝑑
𝑡 at time 𝑡 to create traffic

demand feature vector
⃗⃗ ⃗⃗ ⃗⃗
D 𝑡 = {𝐵𝑢𝑡 , 𝐵𝑑𝑡 , 𝑀𝑢

𝑡 , 𝑀
𝑑
𝑡 , 𝐴

𝑢
𝑡 , 𝐴

𝑑
𝑡 , 𝐻

𝑢
𝑡 , 𝐻

𝑑
𝑡 }. For each metric, 𝑢 and 𝑑 represent

UL and DL. 𝐵𝑢𝑡 is calculated as
∑

𝑖 𝑏
𝑢,𝑖
𝑡 /(𝑛𝑡 ∗ 𝑐), where 𝑏𝑢,𝑖𝑡 is the UL buffer level for UE 𝑖 and 𝑐 is the

RLC buffer capacity. We calculate 𝑀𝑢
𝑡 = max𝑖 (𝑏𝑢,𝑖𝑡 /𝑐) as the maximum UL buffer level across all

UEs. The data arrival rate 𝐴𝑢
𝑡 indicates how quickly data is arriving in the UL buffers. We model

each UE’s rate 𝑎𝑢,𝑖𝑡 = 𝜆
𝑢,𝑖
𝑡 ∗ 𝑠𝑢,𝑖𝑡 as a Poisson process, where 𝜆𝑢,𝑖𝑡 is the inter-packet arrival rate and

𝑠
𝑢,𝑖
𝑡 is the average packet size. The overall arrival rate 𝐴𝑢

𝑡 =
∑

𝑖 𝑎
𝑢,𝑖
𝑡 is the sum of individual UE

arrival rates. We normalize 𝐴𝑢
𝑡 by dividing it with the maximum data arrival rate supported by the

BS3. The head-of-line (HoL) delay 𝐻𝑢
𝑡 =

∑
𝑖 ℎ

𝑢,𝑖
𝑡 /𝑛𝑡 is the average HoL delay experienced by all UEs.

The DL counterparts of these metrics in
⃗⃗ ⃗⃗ ⃗⃗
D 𝑡 follow the same terminology.

(ii) BS load features.We also consider BS load features
⃗⃗ ⃗⃗⃗
L 𝑡 = {𝑇𝑢

𝑡 ,𝑇
𝑑
𝑡 , 𝑅

𝑢
𝑡 , 𝑅

𝑑
𝑡 } to capture the effect

of traffic demand on BS’s resources. 𝑇𝑢
𝑡 =

∑
𝑖 𝑡

𝑢,𝑖
𝑡 represents the UL BS throughput, where 𝑡𝑢,𝑖𝑡 is

UE 𝑖’s UL throughput normalized by the maximum BS throughput. 𝑅𝑢𝑡 =
∑

𝑖 𝑟
𝑢,𝑖
𝑡 is the total resource

utilization, which is calculated as the sum of the normalized UL resource blocks 𝑟𝑢,𝑖𝑡 assigned to
each UE where the normalization is performed against the total number of resource blocks.
(iii) Channel quality features. Given the impact of channel conditions on network perfor-
mance (§3), we incorporate channel quality indicator (CQI) information as well. However, simply
averaging individual UEs’ wideband CQIs 𝑐𝑢,𝑖𝑡 does not work well in practice, as UEs encounter ex-
tremely diverse channel conditions in the real world. Therefore, to encode meaningful information
about channel variation, we employ median, 25th %ile, and 75th %ile CQI values to get channel
quality features

⃗⃗ ⃗⃗
C 𝑡 = {P-25𝑖 (𝑐𝑢,𝑖𝑡), P-25𝑖 (𝑐𝑑,𝑖𝑡), P-50𝑖 (𝑐𝑢,𝑖𝑡), P-50𝑖 (𝑐𝑑,𝑖𝑡), P-75𝑖 (𝑐𝑢,𝑖𝑡), P-75𝑖 (𝑐𝑑,𝑖𝑡)}. These

CQI values are further normalized using the maximum possible CQI value in 5G (i.e., 31).
(iv) QoS features. Lastly, a buffer tolerance factor 𝜌𝑡 ∈ [0, 1] indicates BS’s cumulative buffering
tolerance for all UEs. A low tolerance (i.e., 𝜌𝑡 ≃ 0) loosely represents latency-sensitive traffic.

5.2 Context-aware Resource Forecasting
We consider two options forWixor’s objectives: the application layer QoE metrics and the radio pro-
tocol layerQoSmetrics. Directly optimizing QoEmetrics may lead to high end-user performance, but
it requires explicit QoE feedback from the applications. In contrast, although QoSmetrics are generic
indicators of application performance, they can be directly estimated at the BS without application
support.Wixor, therefore, optimizes an objective based on three key QoS metrics: (O1) maximize
the sum of UL and DL BS throughput, i.e., max𝑇𝑢

𝑡 and max𝑇𝑑
𝑡 ; (O2) minimize network latency

estimated as the highest buffer occupancy level (or self-inflicted queuing delay [77]) for all UEs,
i.e., min𝑀𝑢

𝑡 and min𝑀𝑑
𝑡 ; and (O3) avoid data loss approximated as the buffer overflow tendency

of RLC queues, i.e., min 1 −𝑀𝑢
𝑡 and min 1 −𝑀𝑑

𝑡 . We next describe Wixor’s NN-based RL agent.
Reward: As shown in Eqn. 1,Wixor’s RL agent combines O1, O2 and O3 into a reward function 𝑟𝑡 .
O2 and O3 create a trade-off, hence, we leverage the buffer tolerance factor 𝜌𝑡 , previously defined
in §5.1, to determine the weight for each objective. 𝜂 ∈ [0, 1] is Wixor’s UL traffic priority. On a
high level, the reward increases if the BS throughput is high, and the worst buffering delay is low.

𝑟𝑡 = 𝜂 (𝑇𝑢
𝑡 + 𝜌𝑡 −𝑀𝑢

𝑡) + (1 − 𝜂) (𝑇𝑑
𝑡 + 𝜌𝑡 −𝑀𝑑

𝑡) (1)

State:At each time step 𝑡 ,Wixor’s learning agent takes state inputs 𝑠𝑡 = {
⃗⃗⃗⃗ ⃗⃗
D 𝑡−𝑘 :𝑡 ,

⃗⃗ ⃗⃗⃗
L 𝑡−𝑘 :𝑡 ,

⃗⃗ ⃗⃗
C 𝑡−𝑘 :𝑡 , 𝜌𝑡 }

for its NN.
⃗⃗ ⃗⃗ ⃗⃗
D 𝑡−𝑘 :𝑡 ,

⃗⃗ ⃗⃗⃗
L 𝑡−𝑘 :𝑡 , and

⃗⃗ ⃗⃗
C 𝑡−𝑘 :𝑡 are traffic demand, BS load, and channel quality feature

vectors, respectively, for the past 𝑘 time steps.
3The maximum BS data arrival rate (and throughput) can either be computed empirically by saturating BS with over 100%
load under optimal channel conditions, or theoretically using subcarrier spacing (𝜇), channel bandwidth, beamforming
parameters, etc. [21]. Wixor uses the latter by default.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

38:10 Ahmad Hassan et al.

Action: Given 𝑠𝑡 , the learning agent predicts the UL S&S percentage needed, i.e., 𝑎𝑡 = 𝑝𝑢𝑡 ∈ [0, 1].
Note that the sum of UL (𝑝𝑢𝑡), DL (𝑝𝑑𝑡) and guard period (𝑝𝑔𝑡) S&S percentages amounts to one, i.e.,
𝑝𝑢𝑡 + 𝑝𝑑𝑡 + 𝑝𝑔𝑡 = 1. We explain how to compute 𝑝𝑑𝑡 and 𝑝𝑔𝑡 in §6.2.
RL Model Training: After applying each action, the simulated environment transitions to a new
state and provides a reward to the RL agent. The primary goal of the RL agent is to maximize
the expected cumulative reward, i.e., maxE[∑∞

𝑡=0 𝑟𝑡]. Various algorithms can train an RL agent
within the abstract RL framework described above (e.g., DQN [60], PPO [64]). We use the soft
actor-critic (SAC) algorithm [42] for two primary reasons: (i) it is the state-of-the-art and has been
applied successfully to numerous learning problems in networked systems [45, 46, 57]; and (ii) its
asynchronous parallel training allows multiple BSs to send their experience feedback to the RL
agent, leading to a shorter model convergence time as opposed to other RL algorithms. We present
the details of NN architecture and training methodology in Appendix A.1. To adapt to varying
traffic patterns and network policies,Wixor temporarily stores BS-level logs in a buffer and updates
the model every 15 minutes with a small learning rate (1e-4). Unlike offline simulator training, the
RL agent does not perform exploration during runtime.

6 Context-aware Policy Provision
After receiving the predicted UL S&S percentage, Wixor employs a conservative policy smoothing
technique to reduce abrupt policy changes (§6.1). Subsequently, it balances the tradeoff between
the inter-slot delay and guard period overhead to determine the best TDD pattern (§6.2).

6.1 Conservative Policy Smoothing
As noted in §3.3, abrupt TDD policy changes due to fluctuating load can misguide the transport-
layer congestion control or application-layer rate adaptation logic. To prevent this, Wixor must
tolerate traffic load noise shown in Fig. 3a, while promptly responding to long-term traffic load
variations. To achieve this, Wixor applies a conservation policy smoothing technique to the action
(𝑎𝑡 = 𝑝𝑢𝑡) generated by the resource forecasting module.

𝛾𝑡 = 𝛽𝛾𝑡−1 + (1 − 𝛽) |𝑝𝑢𝑡 − 𝑝𝑢𝑡−1 | (2a)
𝛼𝑡 = 𝛾

𝑡
𝑏
/𝑚𝑎𝑥 (𝛾𝑡−𝑡𝑠 : 𝑡) (2b)

𝑝𝑢𝑡 = 𝛼𝑡𝑝
𝑢
𝑡 + (1 − 𝛼𝑡)𝑝𝑢𝑡−1 (2c)

Eqn. 2c represents the traditional Exponentially Weighted Moving Average (EWMA). Through
large-scale simulations, we find that the proper value of weight 𝛼𝑡 is not static. Therefore, Eqn. 2a
applies another EWMA to smooth out the TDD policy variation 𝛾𝑡 (the weight 𝛽 is found to be
insensitive to the prediction result; we empirically use 0.5), and Eqn. 2b normalizes 𝛾𝑡

𝑏
using a time

window [𝑡 − 𝑡𝑠 , 𝑡] where 𝑡𝑠 is a large positive multiple of system time step length Δ𝑡 . Through
testing various 𝑡𝑠 values, we found that 30Δ𝑡 best balances the trade-off between mitigating traffic
noise and ensuring prompt responsiveness. Intuitively, a sudden large change in predicted UL S&S
percentage (𝑝𝑢𝑡) will lead to a large 𝛼𝑡 , which makes 𝑝𝑢𝑡 rely less on (potentially stale) 𝑝𝑢𝑡−1.

6.2 QoS-aware TDD Policy Derivation
Once Wixor knows 𝑝𝑢𝑡 , it must determine the S&S arrangement for the TDD policy P𝑡 while
accounting for guard periods. However, deriving P𝑡 is not straightforward due to the significant
impact of inter-slot delay on network latency and application QoE (§3.2). The key challenge lies in
balancing the tradeoff between minimizing inter-slot delay and managing guard period overhead.
Lower inter-slot delays reduce network latency but increase DL→UL and UL→DL transitions,
leading to higher guard period overhead and, ultimately, reduced throughput.Wixor judiciously

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

Wixor: Dynamic TDD Policy Adaptation for 5G/xG Networks 38:11

balances this tradeoff by finding a TDD pattern withminimum normalized weight between inter-slot
delay and guard period overhead.
Calculating guard period. In TDD systems, guard periods are implemented as brief intervals of
no transmission between UL and DL symbols to: (i) avoid interference and account for propagation
delays, and (ii) allow BS and UE radio hardware time to switch between transmission (Tx) and
reception (Rx) modes. The guard period primarily depends on two factors: themaximumBS coverage
radius that determines the propagation delay between the BS and the UE, and the switching delay
between Rx and Tx modes for both the BS and the UE. Based on these factors, Wixor explicitly
calculates the number of guard symbols required for DL→UL transitions (𝑔𝑑,𝑢) and UL→DL
transitions (𝑔𝑢,𝑑). The detailed procedure to compute 𝑔𝑑,𝑢 and 𝑔𝑢,𝑑 is described in Appendix A.2.
Computing valid TDD policy set. Given 𝑝𝑢𝑡 , 𝑔𝑑,𝑢 , and 𝑔𝑢,𝑑 , Wixor can compute all possible
arrangements of UL, DL, and guard S&Ss. In order to adhere to 3GPP specifications, which restrict
how TDD patterns are defined [20],Wixor generates valid TDD patterns (S&S arrangements) for
all suitable transmission periodicities to create a TDD policy set S𝑡 . S𝑡 typically has a size of 5-25
valid patterns depending on 𝑝𝑢𝑡 , numerology (𝜇), and transmission periodicity (𝜏). For each pattern
𝑠 : 𝑠 ∈ S𝑡 ,Wixor also computes: (i) the guard period overhead 𝑝𝑔,𝑠 given by the percentage of guard
S&Ss in 𝑠 . Depending on the pattern and BS configuration, the guard periods can result in 0.2-3.1%
of wasted bandwidth; and (ii) the total inter-slot delay 𝑑𝑠 for DL→UL and UL→DL transitions.
Finding the best TDD policy.Wixor balances the tradeoff between the guard period overhead
and the inter-slot delay. The inter-slot delay dictates the minimum amount of time network packets
spend in the per-UE queues waiting to be transmitted. Therefore, the buffering tolerance factor
𝜌𝑡 introduced earlier (§5.1) can be leveraged to encode our preference for network latency. Wixor
then employs 𝜌𝑡 to compute a normalized weight𝑤𝑠 using Eqn. 3. Lastly,Wixor finds the pattern
with minimum normalized weight to get the best TDD policy P𝑡 from S𝑡 as argmin

𝑠∈S𝑡

(𝑤𝑠).

𝑤𝑠 = 𝜌𝑡
𝑑𝑠∑

𝑠∈S𝑡
𝑑𝑠

+ (1 − 𝜌𝑡)
𝑝𝑔,𝑠∑

𝑠∈S𝑡
𝑝𝑔,𝑠

(3)

Note on design. The TDD policy derivation approach described here is not an optimal choice
derived through formal analysis - it is a heuristic, particularly the calculation of buffering tolerance
factor 𝜌𝑡 , in part due to the lack of application-level support or QoE feedback. However: (i) it
performs well in realistic settings (§8.5), (ii) it provides a configurable knob to fine-tune the latency
versus throughput tradeoff, and (iii)Wixor supports arbitrary 𝜌𝑡 derivation methods. We implement
two approaches: (i) a fixed approach where 𝜌𝑡 does not change over time, and (ii) a default approach
where 𝜌𝑡 is calculated based on the number of latency-sensitive flows in the BS (details in §7).

7 Implementation
Wixor is built on top of srsRAN [13, 16] in over 2.3K lines of C/C++ code. Apart from that, we add
support for runtime TDD policy adaptation and multi-layer (MAC, RLC, and PDCP) data logging
in srsRAN. We also develop a faithful 5G network simulator based on the 𝑛𝑠3 5G Lena [5] codebase
for large-scale trace-driven simulations. The implementation details are in Appendix §B.

8 Evaluation
Due to the lack of operator-side support and the cost of deploying a commercial BS, most of our
experiments are carried out using an in-lab over-the-air testbed and a large-scale 𝑛𝑠3 simulator
driven by real-world traces, previously described in §3.1. We summarize our main findings here.
• We use a suite of six diverse apps to quantify QoE gains. Compared to baselines,Wixor improves
application QoE metrics by 2.5%-96.5%, or is within 91.6% of the best scheme (§8.2 & §8.3).

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

38:12 Ahmad Hassan et al.

• Wixor is particularly useful under changing traffic loads and fluctuating channel conditions. For
example, compared to the walking scenario, it offers 3.2% and 15.3% higher average throughput
and latency improvement for driving (§8.4).
• Wixor respects the radio network’s optimization objectives, is scalable, workswell under advanced
BS configurations, and operates close to the optimal solution (§8.4 & §8.5).

8.1 Experiment Setup
Methodology.Our experiments use 5G numerology 𝜇=1 (30 KHz subcarrier spacing) and the propor-
tional fair MAC scheduler, unless otherwise mentioned. The BS operates with Band 78 @ 3410 MHz
and 20 MHz channel bandwidth. The channel quality indicator (CQI) reporting interval is set to
40 ms. We trainWixor with 60% of the (channel and traffic) traces and use the rest for evaluation.
The UL and DL priority for Wixor is equal (i.e., 𝜂=0.5), and the buffering tolerance factor (𝜌𝑡) is
adjusted according to the 5QI method discussed in §7.

Baselines. (i) Default: the default static, DL-heavy TDD policy employed by current 5G networks
(i.e., 22.8% UL and 72.8% DL S&Ss); (ii) SFair: a static TDD policy that fairly distributes S&Ss among
UL and DL based on the average traffic load of an experiment; (iii) Reactive: a TDD policy that
configures S&Ss at time step 𝑡 according to the previous time step’s traffic load; (iv) DRP [27]: a
recent RL-based algorithm that derives UL and DL S&S percentage to minimize buffer overflows.
To the best our ability, we train DRP’s RL agent using BS-level features and parameters described
in the paper. Further, we use the same UL and DL priority as Wixor.

Applications and metrics. Apart from the trace-generated background traffic (§3.1), we use six
diverse application workloads to generate traffic. (i) Edge Video Analytics (EVA): We select a popular
EVA task, i.e., Object Detection. We use the frame response latency and perceptive accuracy as
performance metrics. The perceptive accuracy [40, 49] captures mean average precision for sending
frames, and replaces a frame’s inference with the last feedback if a response is not received within
40 ms. (ii) Edge-assisted Vehicle Perception (EAVP): Autonomous vehicles rely on object tracking
to ensure safe and robust driving performance. We compute object tracking’s frame response
latency and the mean Intersection over Union (IoU) metric. IoU measures the overlap between the
predicted bounding box of the object and the ground truth bounding box across consecutive frames.
(iii) Live Video Ingest (LVI): We measure the performance in terms of sending bitrate and ingest
delay for published video streams. Ingest delay [84] calculates the time elapsed from the video
frame generation to the reception of the corresponding segment at the video server for clients to
download. (iv) Video-on-Demand (VoD): We normalize the video bitrate using the maximum bitrate
while the stall percentage is the proportion of time the video is stalled during a video playback
session. (v) Live Video Conferencing (LVC): We calculate the average Structural Similarity Index
(SSIM) to quantify similarity between sent and received frames for both clients. Likewise, video
delay is the average duration between frame reception and transmission times for both clients.
(vi) HTTP File Transfer (HFT): The UE repeatedly uploads/downloads a 128 MB file to/from the
application server. We log the total file upload/download time to show results. The detailed setup
for each of the six applications is described in Appendix C.1.

8.2 Overall Benefit for the Applications
We conduct extensive simulations to evaluate the performance of Wixor. Our evaluation only
utilizes the six applications described earlier (§8.1) to generate user traffic; we do not generate any
background traffic for this experiment. Each app has up to 10 instances running concurrently, with
each instance running for a maximum of 300 secs. To distribute the traffic temporally, we generate
app instance start times using a Poisson random process. Specifically, we determine inter-arrival
times for app instances with an arrival rate 𝜆 = 10/300 = 0.033 and convert these to start times.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

Wixor: Dynamic TDD Policy Adaptation for 5G/xG Networks 38:13

0

4

8

N
o

rm
.

B
S

T
p

u
t. ×10−1

Default
SFair

Reactive
DRP

Wixor

0

2

4

N
o

rm
.

B
u

ff
er

L
ev

el ×10−1

0

2

4

%
B

u
ff

er
O

ve
rfl

o
w

×10−3

Fig. 9. BS QoS metrics for
the simulation experiments
in Table 3.

Table 3. Overall QoE improvement for six application workloads and 6 hrs+
of channel traces. The numbers represent the mean and standard deviation.
Wixor outperforms baselines for most of the metrics. The up (↑) and down (↓)
arrows indicate the direction of QoE improvement. The gray shaded region
highlights the best performing scheme.

Application Metric Default SFair Reactive DRP Wixor

Edge Video
Analytics (EVA)

Response Latency (ms) ↓ 93.3±10.6 77.2±9.1 44.9±7.5 57.4±7.1 38.1±6.4
Perceptive Accuracy (%) ↑ 34.7±6.2 40.1±6.1 54.8±7.0 47.6±7.9 68.2±8.5

Edge-assisted Autonomous
Vehicle Perception (EAVP)

Response Latency (ms) ↓ 67.8±6.5 60.3±6.5 51.7±6.1 56.8±6.2 46.3±5.9
Mean IoU ↑ 0.68±0.1 0.71±0.1 0.77±0.2 0.74±0.1 0.78±0.1

Live Video
Ingest (LVI)

Ingest Delay (ms) ↓ 284.9±34.7 255.3±28.5 246.4±28.3 233.8±24.0 191.5±22.5
Sending Bitrate (Mbps) ↑ 3.8±1.5 5.5±1.2 5.8±1.3 6.1±1.3 6.2±1.2

Video-on-Demand
(VoD) Streaming

Normalized Bitrate ↑ 0.83±0.1 0.63±0.2 0.77±0.2 0.80±0.2 0.81±0.2
Stall Percentage (%) ↓ 0.63±0.3 0.11±0.1 0.18±0.1 0.25±0.2 0.12±0.2

Live Video
Conferencing (LVC)

Video Quality (SSIM dB) ↑ 15.3±1.1 13.1±1.4 14.1±1.5 14.6±1.1 15.7±1.4
Video Delay (ms) ↓ 48.7±5.6 65.9±5.8 48.3±5.7 58.4±6.3 43.9±5.2

HTTP File
Transfer (HFT)

Upload Time (s) ↓ 562.3±75.7 422.9±64.3 418.4±74.7 397.3±63.9 405.7±61.4
Download Time (s) ↓ 352.8±56.9 379.8±54.2 376.3±58.4 381.6±62.7 385.2±60.3

Each experiment ran for 30 mins, using random channel traces from our corpus. We repeated
each experiment 5×, selecting different random traces for each run. The overall traffic load for the
experiment ranged between 30% and 90%.
Overall QoS improvement. Wixor considers three BS QoS metrics in its overall objective for all
applications, i.e., BS throughput, buffer level, and buffer overflows (§5.2). Fig. 9 compares these
metrics across all baselines to Wixor. There are two main takeaways: (i) Wixor outperforms static
TDD policies (Default and SFair) across all metrics. For instance, it achieves an average 16.1%-29.5%
higher BS throughput compared to static schemes. While Default provides high DL throughput, its
UL performance degrades due to the DL-heavy S&S allocation; and (ii) DRP performs similarly to
Wixor in terms of BS throughput and buffer overflows. However,DRP maintains 1.9× higher average
buffer level thanWixor. Since DRP’s reward function prioritizes a high buffer level while avoiding
overflows, latency-sensitive applications will experience significant performance degradation.
QoE benefits. Table 3 showcases the overall QoE gains Wixor brings for various applications. Our
results highlight three main findings: (i) Wixor achieves significantly higher performance than the
baselines for all latency-sensitive applications (EVA, EAVP, and LVC). For EVA, it achieves an average
24.4%-96.5% higher perceptive accuracy compared to other schemes, while reducing the response
latency by 15.1%-59.2%. The reduction in latency can be mainly attributed toWixor’s latency-aware
optimization objective (§5.2) and policy derivation mechanism (§6.2). (ii) Default, having DL-heavy
S&S allocation, performs slightly better thanWixor for the DL bandwidth-intensive applications
(VoD, HFT download). As an example, Default has an average 2.5% and 3.7% higher VoD bitrate than
Wixor and DRP , respectively. (iii) Wixor and DRP offer similar performance for the UL bandwidth-
intensive applications (HFT upload, LVI). To summarize, Wixor primarily balances UL and DL S&S
allocation to promptly provision resources for all application types - it outperforms or is within
91.6% of baselines for all metrics. Note that here we usedWixor’s default parameter values (e.g.,
𝜂=0.5). We later (§8.5) show that Wixor can be easily tuned to prefer certain use cases.

8.3 Over-the-air Evaluation of Wixor
We evaluateWixor prototype with a combination of application and trace-generated background
traffic. We conduct 5 hrs+ of experiments using the over-the-air setup described in §3.1. The
background traffic is generated with 15 random UE traces from DL5G.
Dissecting Wixor’s performance gains.We first test the EVA app that runs on one PX7, with
background traffic running on the other. These experiments use a fixed 𝜌𝑡 (i.e., 0.5). Fig. 10 (left)
shows the frame response latency and perceptive accuracy. In our setup, the latency-sensitive
EVA requires a frame response latency of less than 40 ms, as indicated by the dotted gray line. To

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

38:14 Ahmad Hassan et al.

100 80 60 40 20

Response Latency (ms)

30

50

70

90

P
er

ce
p

ti
ve

A
cc

u
ra

cy
(%

)

delay
thresh.

QoE

Default
SFair

Reactive
DRP

Wixor

D
efau

lt

S
F

air

R
eactive

D
R

P

W
ixor

0

20

40

60

B
S

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Fig. 10. Comparison of Edge Video Ana-
lytics QoE across baselines.

0.6 0.4 0.2 0.0

Stall Percentage (%)

0.4

0.6

0.8

1.0

N
o

rm
a

liz
ed

B
it

ra
te QoE

Default
SFair

Reactive
DRP

Wixor

Fig. 11. Comparison of
Video-on-Demand stream-
ing QoE across baselines.

Table 4. System overhead of
Wixor (65% traffic load).

Metric Default Wixor Δ Gap
CPU

Utilization (%) 52.4±6.5 60.1±6.8 7.7

Memory
Utilization (%) 23.9±2.1 26.2±2.0 2.3

Table 5. Wixor neural net-
work’s inference time.

Method Inference Time (ms)
CPU 13.1±1.9
GPU 6.8±1.3

demonstrate that Wixor maintains fairness for other users, we also plot the overall BS throughput
(right) There are four key takeaways. (i) Wixor significantly outperforms the baselines across both
metrics. For example, it offers an average 24.9%-94.5% higher perceptive accuracy and 21%-60.1%
lower response latency than baselines. (ii) Unlike DRP , Wixor’s incorporation of latency objectives
in its RL reward (Eqn. 1) minimizes buffering delays for latency-sensitive applications. On average,
DRP incurs 36.5% higher response latency than our approach, largely due to DRP’s higher buffer
levels and queuing delays. Although not shown here, DRP’s median buffer level is 1.4× larger than
Wixor’s during the experiment. (iii) Static schemes like Default and SFair cannot adapt to changing
traffic loads, leading to the lowest performance in our tests. (iv) Interestingly, Reactive, by following
the UL and DL traffic patterns to reduce buffer levels, outperforms DRP in terms of QoE, delivering
19.6% and 19.9% better average response latency and perceptive accuracy, respectively. However,
Reactive still falls short of Wixor performance due to its reactive nature (§3.2).
Next, we evaluateWixor with the most ubiquitous form of Internet traffic, i.e., VoD streaming.

Our results in Fig. 11 indicate thatWixor, Default and DRP offer similar throughput performance
for DL bandwidth-intensive apps. For instance,Wixor offers 2.5% lower average bitrate than Default
while reducing average stall up to 40%. Default’s high DL performance comes at the cost of lower
UL performance as seen earlier in Table 3. DRP , on the other hand, performs well for bandwidth-
intensive applications, but incurs QoE loss for latency-sensitive applications, as seen above.
Wixor’s overhead.We record the CPU overhead and memory consumption of Wixor in Table 4.
Compared to Default, Wixor increases the absolute CPU and memory utilization by 7.7% and 2.3%,
respectively. The overhead primarily comes fromWixor’s RL agent’s resource forecasting (§5.2),
which may slightly rise with the number of users. Although not shown here, the CPU and memory
utilization only increases by 3.2% and 1.1%, respectively, when the traffic load increases from 65% to
90%. We also compute RL agent’s inference time in Table 5. By default,Wixor performs inference
on a CPU which takes only 13 ms on average. The inference time can be further reduced with a
GPU, e.g., NVIDIA GeForce RTX 3060 Ti GPU cuts the average inference time to 7 ms (48.1% ↓).

8.4 Wixor under Diverse Settings
We use 𝑛𝑠3 simulations, with trace-generated background traffic (from 30 random UE traces unless
otherwise mentioned), to evaluate how Wixor performs under different settings.
Traffic load. We pick three traffic traces with varying fluctuation levels (standard deviation)
from DL5G: T1, T2, and T3 with approximately 60%±10%, 60%±20%, and 60%±30% average traffic
load, respectively. Each trace is 10 mins long. Our results in Table 6 highlight thatWixor’s TDD
policy adapts well to the changing load, while other baselines cannot. For example, the absolute
performance gap betweenWixor and Reactive increases from 3.5% to 8.5% as load variation goes up.
Radio channel quality. Our channel trace corpus consists of various mobility scenarios (e.g.,
walking and driving). The driving scenario sees more channel fluctuations than the walking case –
driving has an average SINR of 14±5 dB while walking has 17±3 dB SINR. Although not shown,

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

Wixor: Dynamic TDD Policy Adaptation for 5G/xG Networks 38:15

Table 6. The average BS
throughput gap (Δ, in %)
b/w Wixor and baselines.

Trace Δ SFair Δ Reactive Δ DRP
T1 9.1 7.3 3.8
T2 12.0 10.2 5.2
T3 15.2 14.9 6.4

Table 7. Comparing Wixor perfor-
mance across 5G numerologies.

𝝁
Reactive Wixor

BS
Throughput

Per-packet
Latency

BS
Throughput

Per-packet
Latency

0 52.2±6.3 48.1±7.0 57.5±6.8 40.1±4.9
1 49.8±6.3 47.4±5.9 55.1±6.7 36.7±5.3
2 48.3±6.4 47.6±6.2 53.0±6.7 33.2±5.2

2.5 3.0 3.5

Spectral Efficiency (bit/s/Hz)

0.85

0.90

0.95

1.00

F
a

ir
n

es
s

In
d

ex

η=0.75
0.25

0.5

bette
r

Default SFair Reactive DRP Wixor

0.25 0.5 0.75
UL priority (η)

0

20

40

60

B
S

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

DL

UL

DL

UL

DL

UL

Fig. 12. Wixor’s impact on RAN metrics.

Wixor offers higher performance improvement when the radio channel fluctuates frequently due
to its use of channel quality features (§5.1). For example,Wixor has 1.4% higher BS throughput and
32.1% lower per-packet latency than DRP on average for the walking case. For driving, the average
throughput and latency improvement is 4.6% (↑3.2%) and 47.4% (↑15.2%), respectively.
Advanced BS configurations.Our evaluations have used a 5G numerology 𝜇=1 (30 KHz subcarrier
spacing) so far, which is the 𝜇 used by 5G Mid-Band operators these days [37]. We test Wixor
with other numerologies and summarize the results in Table 7. In general, higher 𝜇 values lead
to more slots per subframe which ultimately increases the number of possible S&S arrangements.
This results in lower network latency but slightly reduced BS throughput. Wixor therefore reduces
network latency when 𝜇 increases (or # of S&S arrangements increases).

8.5 Wixor Deep Dive
RAN objectives. Here, our setup utilizes 𝑛𝑠3 simulations with trace-generated background traffic
only (from 30 random UE traces). Fig. 12 (left) plots the user fairness and spectral efficiency for
different UL priority (𝜂) values. To evaluate user fairness, we calculate the Jain’s fairness index of the
long-term average throughput among users. Spectral efficiency (bit/s/Hz) indicates the amount of
information sent through a network using the available bandwidth. The right plot in Fig. 12 shows
the distribution of UL and DL BS throughput. Our results provide two key insights: (i) Wixor’s
fairness for the default UL priority (i.e., 𝜂=0.5) is within 98.9% of the Default. In addition, Wixor
improves average spectral efficiency by 1.6% compared to Default. (ii) The 𝜂 parameter can be
adjusted to fine-tune UL performance. A higher 𝜂 (0.75) enhances UL performance, but the overall
BS throughput and spectral efficiency decrease, as UL typically requires more S&Ss to achieve the
same performance as DL (§3.3).
Scalability and application-level fairness. We evaluate Wixor with a large number of users
simultaneously performing HTTP File Transfer (HFT). Each user simultaneously downloads and
uploads a 128 MB file. Fig. 13 plots the average UL and DL file transfer time as the total number of
users grow. When users increase, the file transfer time gradually increases due to limited bandwidth
of our BS. However, the increase is almost linear, and the standard deviations are small, suggesting
that Wixor also offers application-level fairness in the presence of multi-user competition.
Optimality. Next, we analyze the performance gap betweenWixor and an offline optimal solution
(Oracle). Oracle employs dynamic programming to compute the optimal TDD policy. Specifically, we
exhaustively search all TDD patterns to find the one that offers the best performance based on Eqns. 1
& 3 (§4). Fig. 14 illustratesWixor’s BS throughput and per-packet latency for different buffering
tolerance factors (𝜌) and compares it with Oracle. Our results highlight two main findings: (i) On
average, Wixor is within 82.2% and 88.0% of the Oracle for per-packet latency and BS throughput,
respectively. The performance gap stems from two factors: prediction errors in the forecasting
module (§5.2) and performance loss from breaking TDD policy adaptation into sequential steps
instead of joint optimization (§4). We explore both factors next. (ii) The configurable buffering
tolerance factor effectively tradeoffs latency for higher throughput and vice versa.
Prediction accuracy of demand customization engine.We utilize 𝑛𝑠3 simulations (HFT with
30 users, 𝜌=0.9) to analyze how well Wixor predicts the UL S&S (𝑝𝑢𝑡). Note that we use a high 𝜌

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

38:16 Ahmad Hassan et al.

15 35 55

of Users

0.0

0.5

1.0

1.5

F
ile

T
ra

n
sf

er
T

im
e

(s
ec

s)

×103

Fig. 13. System
scalability under
multiple users.

70 50 30 10

Per-packet Latency (ms)

20

40

60

80

B
S

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0.0
0.2

0.4
0.5

0.6
0.8

ρ=1.0
bette

r

Reactive
DRP

Wixor
Oracle

Fig. 14. Perf. gap b/w
Wixor and Oracle.

Upload Download

300

350

400

F
ile

T
ra

n
s.

T
im

e
(s

)

DRP
Wixor

DRP Wixor
0.00

0.05

0.10

0.15

N
o

rm
a

liz
ed

M
A

E

Fig. 15. Comparing the predic-
tion accuracy of demand cus-
tomization engine with DRP .

50 40 30 20

Per-packet Latency (ms)

45

55

65

B
S

T
p

u
t.

(M
b

p
s)

bette
r

w/o GT

w/ GT

Reactive Wixor Oracle

Fig. 16. Evaluating the
slot derivation module.

value here to tradeoff latency for higher throughput. The left plot in Fig. 15 quantifies file download
and upload times while the right plot shows the Mean Absolute Error (MAE) between 𝑝𝑢𝑡 and the
ground truth UL traffic load. Compared to DRP ,Wixor reduces the median file transfer time by 2.3%-
3.5%. Wixor’s higher performance can be attributed to its use of cross-layer BS-level features (§5.1)
and careful learning agent design (§6). Overall,Wixor leads to 66.1% lower average MAE than DRP .
Contribution of policy derivation module.We investigate ifWixor’s policy derivation mod-
ule (§6.2) effectively finds the best TDD policy. Again, we use 𝑛𝑠3 simulations with trace-generated
background traffic from 30 random UE traces in DL5G. We leverage the ground truth (GT) UL traffic
load instead of the predicted UL S&S percentage 𝑝𝑢𝑡 for a fair comparison (w/ GT). Our results in
Fig. 16 depict thatWixor operates close (3.6%-7.6% gap depending on the metric) to the Oracle when
it uses ground truth (w/ GT) UL S&S percentage. The gap between Wixor and Oracle increases
slightly (7.0%-25.6%) for the w/o GT case due to the 𝑝𝑢𝑡 prediction error.
Micro-benchmarking. Lastly, we evaluate the conservative policy smoothing (CPS) technique (§6.1),
compare Wixor with other RL schemes, conduct a comprehensive parameter sweep of the NN, and
profile Wixor’s training time in Appendix C.2. We summarize key takeaways as follow. (i) CPS
effectively mitigates the impact of abrupt TDD policy changes on application/transport layer rate
adaptation modules. For instance, Wixor results in 5.9% lower TCP RTT and 14.7% higher through-
put, on average, compared to a setting where CPS is disabled. (ii) Tabular RL schemes are unable to
capture the complexities of the RAN environment; Wixor delivers 27.9% higher average reward
compared to them. (iii) A NN architecture with a single hidden layer and 64 neurons and 1D-CNN
filters performs the best. (iv) Wixor’s overall training time is ∼3.5 hrs.

9 Discussion & Conclusion
Limitations and future work.We acknowledge several limitations of our work. First,Wixor does
not consider cross-link interference between BSs in its solution, an area for future exploration.
Second, we evaluatedWixor only with 5GMid-Band, not mmWave, although the same dynamic
TDD policy adaptation principle should apply. Fourth, Wixor’s RL agent is trained with a simulator
and then transferred to the over-the-air setup; continuous online RL training remains a future goal.
In addition, our solution requires 5QI information to compute the buffering tolerance 𝜌𝑡 . While
feasible for private 5G, public 5G networks could use alternatives like a fixed 𝜌𝑡 (§6.2). Lastly,
integrating Wixor with new software-defined 5G paradigms, such as network slicing [83] and
OpenRAN’s Radio Intelligent Controller [4], is a promising direction for future work.

Despite these limitations, we present a dynamic TDD policy adaptation solution for 5G/xG that
effectively balances the UL and DL resources. We implement and evaluateWixor through simula-
tions and over-the-air experiments, demonstrating significant performance benefits. Furthermore,
Wixor’s standard-compatible design is friendly to both public and private 5G deployments.

Acknowledgments
We would like to thank our shepherd and the anonymous CoNEXT reviewers for their insightful
feedback. This research was supported in part by NSF under Grants 2128489 and 2409267.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

Wixor: Dynamic TDD Policy Adaptation for 5G/xG Networks 38:17

References
[1] 2022. 5G synchronization requirements and solutions. Retrieved June 2024 from https://www.ericsson.com/en/reports-

and-papers/ericsson-technology-review/articles/5g-synchronization-requirements-and-solutions
[2] 2023. 5G/NR - tdd UL/DL Common Configuration. Retrieved June 2024 from https://www.sharetechnote.com/html/5G/

5G_tdd_UL_DL_configurationCommon.html
[3] 2023. CBRS for Private 5G. Retrieved June 2024 from https://www.arubanetworks.com/faq/what-is-cbrs/
[4] 2023. O-RAN Architecture. Retrieved June 2024 from https://docs.o-ran-sc.org/en/latest/architecture/architecture.html
[5] 2024. 5G-LENA: ns-3 module to simulate 5G NR networks. Retrieved June 2024 from https://apps.nsnam.org/app/nr/
[6] 2024. 5G NR Frequency Bands. Retrieved June 2024 from https://en.wikipedia.org/wiki/5G_NR_frequency_bands
[7] 2024. Ant Media: liveVideoBroadcaster. Retrieved June 2024 from https://github.com/ant-media/LiveVideoBroadcaster
[8] 2024. dash.js: Open Source Media Player. Retrieved June 2024 from https://dashjs.org/
[9] 2024. An end-to-end platform for machine learning. Retrieved June 2024 from https://www.tensorflow.org/
[10] 2024. FDD LTE frequency bands. Retrieved June 2024 from https://www.4g-lte.net/about/lte-frequency-bands/fdd/.
[11] 2024. High-Quality 5G Networks Bring the World Faster to the 5.5G Era. Retrieved June 2024

from https://www.huawei.com/en/news/2024/2/5g-high-quality-network-5g-a#:~:text=Multi%2Dcarrier%20networks%
20are%20becoming,all%20now%20multi%2Dcarrier%20capable.

[12] 2024. Open Source 5G Implementation. Retrieved June 2024 from https://open5gs.org/.
[13] 2024. Open Source RAN. Retrieved June 2024 from https://github.com/srsRAN
[14] 2024. Real-time communication for the web. Retrieved June 2024 from https://webrtc.org/
[15] 2024. Serving Models. Retrieved June 2024 from https://www.tensorflow.org/tfx/guide/serving
[16] 2024. srsRAN: A customisable solution for Private Enterprise 5G. Retrieved June 2024 from https://srs.io/srsran-

enterprise-5g/
[17] 2024. Understanding RTMP (Real-Time Messaging Protocol) for Seamless Streaming. Retrieved June

2024 from https://medium.com/@usamawizard/understanding-rtmp-real-time-messaging-protocol-for-seamless-
streaming-7d7d963ba0ef

[18] 2024. USRP B210 SDR Kit. Retrieved June 2024 from https://www.ettus.com/all-products/ub210-kit/
[19] 2024. XCAL: PC based Advanced 5G Network Optimization Solution. Retrieved June 2024 from https://www.accuver.

com/products/network-optimization/XCAL
[20] 3GPP. 2019. 5G; NR; Physical layer procedures for control. Technical Specification (TS) 38.306. 3rd Generation Partner-

ship Project (3GPP). https://www.etsi.org/deliver/etsi_ts/138200_138299/138213/15.06.00_60/ts_138213v150600p.pdf
Version 15.6.0.

[21] 3GPP. 2024. NR; User Equipment (UE) radio access capabilities. Technical Specification (TS) 38.306. 3rd Genera-
tion Partnership Project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?
specificationId=3193 Version 18.1.0.

[22] Qing An, Santiago Segarra, Chris Dick, Ashutosh Sabharwal, and Rahman Doost-Mohammady. 2023. A Deep Rein-
forcement Learning-Based Resource Scheduler for Massive MIMO Networks. IEEE Transactions on Machine Learning
in Communications and Networking (2023).

[23] Guilherme H Apostolo, Pablo Bauszat, Vinod Nigade, Henri E Bal, and Lin Wang. 2022. Live video analytics as a
service. In Proceedings of the 2nd European Workshop on Machine Learning and Systems. 37–44.

[24] Kelvin Au, Liqing Zhang, Hosein Nikopour, Eric Yi, Alireza Bayesteh, Usa Vilaipornsawai, Jianglei Ma, and Peiying
Zhu. 2014. Uplink contention based SCMA for 5G radio access. In 2014 IEEE Globecom Workshops (GC Wkshps).

[25] Jose A. Ayala-Romero, Andres Garcia-Saavedra, Xavier Costa-Perez, and George Iosifidis. 2021. EdgeBOL: automating
energy-savings for mobile edge AI. In Proceedings of the 17th International Conference on Emerging Networking
EXperiments and Technologies (CoNEXT ’21).

[26] Duin Baek, Mallesham Dasari, Samir R Das, and Jihoon Ryoo. 2021. dcSR: practical video quality enhancement using
data-centric super resolution. In Proceedings of the 17th International Conference on emerging Networking EXperiments
and Technologies. 336–343.

[27] Miloud Bagaa, Karim Boutiba, and Adlen Ksentini. 2021. On using Deep Reinforcement Learning to dynamically derive
5G New Radio TDD pattern. In 2021 IEEE Global Communications Conference (GLOBECOM).

[28] Giovanni Bartolomeo, Jacky Cao, Xiang Su, and Nitinder Mohan. 2023. Characterizing distributed mobile augmented
reality applications at the edge. In Companion of the 19th International Conference on emerging Networking EXperiments
and Technologies. 9–18.

[29] Gilberto Berardinelli, Klaus I. Pedersen, Frank Frederiksen, and Preben Mogensen. 2016. On the Guard Period Design
in 5G TDD Wide Area. In 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring). 1–5. https://doi.org/10.1109/
VTCSpring.2016.7504377

[30] Leonardo Bonati, Michele Polese, Salvatore D’Oro, Stefano Basagni, and Tommaso Melodia. 2020. Open, Programmable,
and Virtualized 5G Networks: State-of-the-Art and the Road Ahead. Computer Networks (2020).

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/5g-synchronization-requirements-and-solutions
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/5g-synchronization-requirements-and-solutions
https://www.sharetechnote.com/html/5G/5G_tdd_UL_DL_configurationCommon.html
https://www.sharetechnote.com/html/5G/5G_tdd_UL_DL_configurationCommon.html
https://www.arubanetworks.com/faq/what-is-cbrs/
https://docs.o-ran-sc.org/en/latest/architecture/architecture.html
https://apps.nsnam.org/app/nr/
https://en.wikipedia.org/wiki/5G_NR_frequency_bands
https://github.com/ant-media/LiveVideoBroadcaster
https://dashjs.org/
https://www.tensorflow.org/
https://www.4g-lte.net/about/lte-frequency-bands/fdd/.
https://www.huawei.com/en/news/2024/2/5g-high-quality-network-5g-a#:~:text=Multi%2Dcarrier%20networks%20are%20becoming,all%20now%20multi%2Dcarrier%20capable.
https://www.huawei.com/en/news/2024/2/5g-high-quality-network-5g-a#:~:text=Multi%2Dcarrier%20networks%20are%20becoming,all%20now%20multi%2Dcarrier%20capable.
https://open5gs.org/.
https://github.com/srsRAN
https://webrtc.org/
https://www.tensorflow.org/tfx/guide/serving
https://srs.io/srsran-enterprise-5g/
https://srs.io/srsran-enterprise-5g/
https://medium.com/@usamawizard/understanding-rtmp-real-time-messaging-protocol-for-seamless-streaming-7d7d963ba0ef
https://medium.com/@usamawizard/understanding-rtmp-real-time-messaging-protocol-for-seamless-streaming-7d7d963ba0ef
https://www.ettus.com/all-products/ub210-kit/
https://www.accuver.com/products/network-optimization/XCAL
https://www.accuver.com/products/network-optimization/XCAL
https://www.etsi.org/deliver/etsi_ts/138200_138299/138213/15.06.00_60/ts_138213v150600p.pdf
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3193
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3193
https://doi.org/10.1109/VTCSpring.2016.7504377
https://doi.org/10.1109/VTCSpring.2016.7504377

38:18 Ahmad Hassan et al.

[31] Karim Boutiba, Miloud Bagaa, and Adlen Ksentini. 2023. On enabling 5G Dynamic TDD by leveraging Deep Reinforce-
ment Learning and O-RAN. In NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium.

[32] Karim Boutiba, Miloud Bagaa, and Adlen Ksentini. 2024. Multi-Agent Deep Reinforcement Learning to Enable Dynamic
TDD in a Multi-Cell Environment. IEEE Transactions on Mobile Computing (2024).

[33] Yulong Chen, Junchen Guo, Yimiao Sun, Haipeng Yao, Yunhao Liu, and Yuan He. 2024. ELASE: Enabling Real-time
Elastic Sensing Resource Scheduling in 5G vRAN. In IEEE/ACM International Symposium on Quality of Service (IWQoS).

[34] Yongzhou Chen, Ruihao Yao, Haitham Hassanieh, and Radhika Mittal. 2023. Channel-Aware 5G RAN Slicing with
Customizable Schedulers. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23).

[35] Ming Ding, David López Pérez, Athanasios V. Vasilakos, and Wen Chen. 2014. Dynamic TDD transmissions in
homogeneous small cell networks. In 2014 IEEE International Conference on Communications Workshops (ICC).

[36] Hisham Elshaer, Federico Boccardi, Mischa Dohler, and Ralf Irmer. 2014. Downlink and uplink decoupling: A disruptive
architectural design for 5G networks. In 2014 IEEE global communications conference (GLOBECOM). IEEE.

[37] Rostand A. K. Fezeu, Jason Carpenter, Claudio Fiandrino, Eman Ramadan, Wei Ye, Joerg Widmer, Feng Qian, and
Zhi-Li Zhang. 2023. Mid-Band 5G: A Measurement Study in Europe and US. arXiv:2310.11000

[38] Piotr Gawłowicz and Anatolij Zubow. 2019. ns-3 meets OpenAI Gym: The Playground for Machine Learning in
Networking Research. In ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems (MSWiM).

[39] Jim Gettys and Kathleen Nichols. 2011. Bufferbloat: Dark Buffers in the Internet: Networks without effective AQM
may again be vulnerable to congestion collapse. ACM Queue (2011).

[40] Ionel Gog, Sukrit Kalra, Peter Schafhalter, Matthew AWright, Joseph E Gonzalez, and Ion Stoica. 2021. Pylot: A modular
platform for exploring latency-accuracy tradeoffs in autonomous vehicles. In 2021 IEEE International Conference on
Robotics and Automation (ICRA).

[41] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly high-speed TCP variant. ACM SIGOPS
operating systems review 42, 5 (2008), 64–74.

[42] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor. CoRR abs/1801.01290 (2018). arXiv:1801.01290
http://arxiv.org/abs/1801.01290

[43] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine learning. PMLR.

[44] Ahmad Hassan, Arvind Narayanan, Anlan Zhang, Wei Ye, Ruiyang Zhu, Shuowei Jin, Jason Carpenter, Z. Morley Mao,
Feng Qian, and Zhi-Li Zhang. 2022. Vivisecting mobility management in 5G cellular networks. In Proceedings of the
ACM SIGCOMM 2022 Conference (Amsterdam, Netherlands) (SIGCOMM ’22). Association for Computing Machinery,
New York, NY, USA, 86–100. https://doi.org/10.1145/3544216.3544217

[45] Jiyao Hu, Zhenyu Zhou, Xiaowei Yang, Jacob Malone, and Jonathan W Williams. 2020. CableMon: Improving
the Reliability of Cable Broadband Networks via Proactive Network Maintenance. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 619–632. https:
//www.usenix.org/conference/nsdi20/presentation/hu-jiyao

[46] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar. 2019. A Deep Reinforcement Learning
Perspective on Internet Congestion Control. In Proceedings of the 36th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR,
3050–3059. https://proceedings.mlr.press/v97/jay19a.html

[47] Jaehong Kim, Yunheon Lee, Hwijoon Lim, Youngmok Jung, Song Min Kim, and Dongsu Han. 2022. OutRAN: co-
optimizing for flow completion time in radio access network. In Proceedings of the 18th International Conference on
Emerging Networking EXperiments and Technologies (CoNEXT ’22).

[48] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
(2014).

[49] Mengtian Li, Yu-Xiong Wang, and Deva Ramanan. 2020. Towards Streaming Perception. In Computer Vision – ECCV
2020.

[50] Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao Hu, Ali C Begen, and David Oran. 2014. Probe and adapt: Rate
adaptation for HTTP video streaming at scale. IEEE journal on selected areas in communications 32, 4 (2014), 719–733.

[51] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque, Lingjia Tang, and Jason Mars. 2018. The
architectural implications of autonomous driving: Constraints and acceleration. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and Operating Systems. 751–766.

[52] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. 2014. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, 740–755.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

https://arxiv.org/abs/2310.11000
https://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
https://doi.org/10.1145/3544216.3544217
https://www.usenix.org/conference/nsdi20/presentation/hu-jiyao
https://www.usenix.org/conference/nsdi20/presentation/hu-jiyao
https://proceedings.mlr.press/v97/jay19a.html

Wixor: Dynamic TDD Policy Adaptation for 5G/xG Networks 38:19

[53] Peng Liu, Bozhao Qi, and Suman Banerjee. 2018. Edgeeye: An edge service framework for real-time intelligent video
analytics. In Proceedings of the 1st international workshop on edge systems, analytics and networking. 1–6.

[54] M. Carmen Lucas-Estañ and J. Gozalvez. 2022. Sensing-Based Grant-Free Scheduling for Ultra Reliable Low Latency
and Deterministic Beyond 5G Networks. IEEE Transactions on Vehicular Technology (2022).

[55] Jiamei Lv, Yi Gao, Zhi Ding, Yuxiang Lin, Xinyun You, Guang Yang, andWei Dong. 2024. Providing UE-level QoS Support
by Joint Scheduling and Orchestration for 5G vRAN. In IEEE International Conference on Computer Communications
(INFOCOM).

[56] Basma Mahdy, Hazem Abbas, Hossam S. Hassanein, Aboelmagd Noureldin, and Hatem Abou-zeid. 2020. A Clustering-
Driven Approach to Predict the Traffic Load of Mobile Networks for the Analysis of Base Stations Deployment. Journal
of Sensor and Actuator Networks (2020).

[57] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive Video Streaming with Pensieve. In
Proceedings of the Conference of the ACM Special Interest Group on Data Communication (Los Angeles, CA, USA)
(SIGCOMM ’17). Association for Computing Machinery, New York, NY, USA, 197–210. https://doi.org/10.1145/3098822.
3098843

[58] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine Sherry, Hongqiang Harry Liu, and Mingwei Xu. 2022. Achieving
consistent low latency for wireless real-time communications with the shortest control loop. In Proceedings of the ACM
SIGCOMM 2022 Conference (SIGCOMM ’22).

[59] Debashisha Mishra, P C Amogh, Arun Ramamurthy, A Antony Franklin, and Bheemarjuna Reddy Tamma. 2016.
Load-aware dynamic RRH assignment in Cloud Radio Access Networks. In 2016 IEEE Wireless Communications and
Networking Conference.

[60] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. 2015. Human-level control through deep reinforcement
learning. nature 518, 7540 (2015), 529–533.

[61] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan, Shuowei Jin, Xiao Zhu, Xiaoxuan Zhang, Denis
Rybkin, Zhengxuan Yang, Zhuoqing Morley Mao, Feng Qian, and Zhi-Li Zhang. 2021. A variegated look at 5G in
the wild: performance, power, and QoE implications. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference
(Virtual Event, USA) (SIGCOMM ’21). Association for Computing Machinery, New York, NY, USA, 610–625. https:
//doi.org/10.1145/3452296.3472923

[62] Nidhi, Albena Mihovska, and Ramjee Prasad. 2020. Overview of 5G New Radio and Carrier Aggregation: 5G and
Beyond Networks. In 2020 23rd International Symposium on Wireless Personal Multimedia Communications (WPMC).

[63] Jaeeun Park, Joohyung Lee, Daejin Kim, and Jun Kyun Choi. 2024. Deep Reinforcement Learning Driven Joint Dynamic
TDD and RRC Connection Management Scheme in Massive IoT Networks. IEEE Access (2024).

[64] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347 (2017).

[65] William Sentosa, Balakrishnan Chandrasekaran, P. Brighten Godfrey, Haitham Hassanieh, and Bruce Maggs. 2023.
DChannel: Accelerating Mobile Applications With Parallel High-bandwidth and Low-latency Channels. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23).

[66] Chandan Kumar Sheemar, Leonardo Badia, and Stefano Tomasin. 2021. Game-Theoretic Mode Scheduling for Dynamic
TDD in 5G Systems. IEEE Communications Letters 25, 7 (2021), 2425–2429. https://doi.org/10.1109/LCOMM.2021.3073908

[67] Jing Song, Qingyang Song, Ya Kang, Lei Guo, and Abbas Jamalipour. 2022. QoE-Driven Distributed Resource Opti-
mization for Mixed Reality in Dynamic TDD Systems. IEEE Transactions on Communications 70, 11 (2022), 7294–7306.
https://doi.org/10.1109/TCOMM.2022.3208113

[68] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2020. BOLA: Near-optimal bitrate adaptation for online
videos. IEEE/ACM transactions on networking 28, 4 (2020), 1698–1711.

[69] Hongguang Sun, Matthias Wildemeersch, Min Sheng, and Tony Q. S. Quek. 2015. D2D Enhanced Heterogeneous
Cellular Networks With Dynamic TDD. IEEE Transactions on Wireless Communications (2015).

[70] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger,
Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang, Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov. 2020.
Scalability in Perception for Autonomous Driving: Waymo Open Dataset. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

[71] Zhaowei Tan, Jinghao Zhao, Yuanjie Li, Yifei Xu, and Songwu Lu. 2021. Device-Based LTE Latency Reduction at the
Application Layer. In 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21).

[72] Fengxiao Tang, Yibo Zhou, and Nei Kato. 2020. Deep Reinforcement Learning for Dynamic Uplink/Downlink Resource
Allocation in High Mobility 5G HetNet. IEEE Journal on Selected Areas in Communications (2020).

[73] Van Dat Tuong, Nhu-Ngoc Dao, Wonjong Noh, and Sungrae Cho. 2021. Deep Reinforcement Learning-Based Hier-
archical Time Division Duplexing Control for Dense Wireless and Mobile Networks. IEEE Transactions on Wireless

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/3452296.3472923
https://doi.org/10.1145/3452296.3472923
https://doi.org/10.1109/LCOMM.2021.3073908
https://doi.org/10.1109/TCOMM.2022.3208113

38:20 Ahmad Hassan et al.

Communications (2021).
[74] Kuna Venkateswararao and Pravati Swain. 2020. Traffic aware sleeping strategies for Small-Cell Base Station in the

Ultra dense 5G Small Cell Networks. In 2020 IEEE REGION 10 CONFERENCE (TENCON).
[75] Andressa Vergutz, Guevara Noubir, and Michele Nogueira. 2020. Reliability for smart healthcare: A network slicing

perspective. IEEE Network 34, 4 (2020), 91–97.
[76] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. 2023. YOLOv7: Trainable bag-of-freebies sets new

state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 7464–7475.

[77] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Stochastic Forecasts Achieve High Throughput
and Low Delay over Cellular Networks. In 10th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13). USENIX Association, Lombard, IL, 459–471. https://www.usenix.org/conference/nsdi13/technical-sessions/
presentation/winstein

[78] Yaxiong Xie and Kyle Jamieson. 2022. Ng-scope: Fine-grained telemetry for nextg cellular networks. Proceedings of the
ACM on Measurement and Analysis of Computing Systems 6, 1 (2022), 1–26.

[79] Dongzhu Xu, Anfu Zhou, Guixian Wang, Huanhuan Zhang, Xiangyu Li, Jialiang Pei, and Huadong Ma. 2022. Tutti:
coupling 5G RAN and mobile edge computing for latency-critical video analytics. In Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking (MobiCom ’22).

[80] Yinda Xu, Zeyu Wang, Zuoxin Li, Ye Yuan, and Gang Yu. 2020. SiamFC++: Towards Robust and Accurate Visual
Tracking with Target Estimation Guidelines. arXiv:1911.06188 [cs.CV]

[81] Mu Yan, Gang Feng, Jianhong Zhou, Yao Sun, and Ying-Chang Liang. 2019. Intelligent Resource Scheduling for 5G
Radio Access Network Slicing. IEEE Transactions on Vehicular Technology (2019).

[82] Bo Yu, Liuqing Yang, Hiroyuki Ishii, and Sayandev Mukherjee. 2015. Dynamic TDD Support in Macrocell-Assisted
Small Cell Architecture. IEEE Journal on Selected Areas in Communications (2015).

[83] Shunliang Zhang. 2019. An Overview of Network Slicing for 5G. IEEE Wireless Communications (2019).
[84] Xiao Zhu, Subhabrata Sen, and Z. Morley Mao. 2021. Livelyzer: analyzing the first-mile ingest performance of live

video streaming. In Proceedings of the 12th ACM Multimedia Systems Conference (MMSys ’21).
[85] Anna Łukowa and Venkatkumar Venkatasubramanian. 2019. Centralized UL/DL Resource Allocation for Flexible

TDD Systems With Interference Cancellation. IEEE Transactions on Vehicular Technology 68, 3 (2019), 2443–2458.
https://doi.org/10.1109/TVT.2019.2893061

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/winstein
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/winstein
https://arxiv.org/abs/1911.06188
https://doi.org/10.1109/TVT.2019.2893061

Wixor: Dynamic TDD Policy Adaptation for 5G/xG Networks 38:21

Fig. 17. An overview of how the context-aware resource
forecasting module applies RL to the TDD policy adjust-
ment problem. The simulated environment generates RAN
state, which is fed to the RL agent. After executing the
agent-generated action, the environment transitions to a
new a state and outputs the reward. Fig. 18. The NN and Soft Actor-Critic algorithm

that Wixor uses for resource forecasting.

A Design & Implementation Details
A.1 RL Agent Architecture and Training
RL Policy:Wixor’s RL agent outputs action 𝑎𝑡 based on an RL policy, defined as the conditional
probability distribution over state 𝜋 : 𝜋 (𝑎𝑡 |𝑠𝑡) ∈ [0, 1]. 𝜋 (𝑎𝑡 |𝑠𝑡) is the probability of action 𝑎𝑡 given
state 𝑠𝑡 . In practice, there are intractably many {state, action} pairs, e.g., buffer level, and throughput
estimates are continuous real numbers. To address this, Wixor employs a neural network (NN) to
model 𝜋 with a feasible number of trainable parameters 𝜃 . The policy is thus expressed as 𝜋𝜃 (𝑎𝑡 |𝑠𝑡).
The actor network in Fig. 18 depicts how Wixor uses a NN to represent the RL policy.
RL algorithm: The SAC algorithm used by Wixor to train its RL policy is a policy gradient
method [43]. The key idea in policy gradient methods is to estimate the gradient of the expected
total reward by observing the trajectories of executions obtained by following the RL policy. A
central feature of SAC is entropy regularization: the policy is trained tomaximize a trade-off between
expected return and entropy, a measure of randomness in the policy. The entropy regularization
term encourages exploration, i.e., the RL agent discovers and learns about the environment by
trying out different random actions. As illustrated in Fig. 18, SAC concurrently learns a policy 𝜋𝜃
(actor network) and two Q-functions𝑄𝜙1, 𝑄𝜙2 (critic and value networks). The Q-function, denoted
as 𝑄 (𝑠𝑡 , 𝑎𝑡) represents the expected return (total accumulated reward) starting from state 𝑠𝑡 , taking
action 𝑎𝑡 , and subsequently following a policy 𝜋 . It is important to note that the critic and value
networks merely help to train the actor network: post-training, only the actor network is required
to generate actions.
Model Training: After applying each action, the simulated environment provides the learning
agent with a reward 𝑟𝑡 , as highlighted in Fig. 17. The RL agent continually performs gradient
descent to improve the RL policy. To further improve and accelerate training, Wixor launches
multiple RL agents to operate concurrently. By default, we employ 8 parallel agents. Each agent is
set up with different input parameters (e.g., channel traces and traffic workloads). These agents
continuously transmit their {state, action, reward} tuples to a central agent, which aggregates the
data to create a unified model. For each received sequence of tuples, the central agent employs
the SAC algorithm to compute policy gradients and perform gradient descent. Subsequently, the
central agent updates the actor network and distributes the updated model to the corresponding
agent that sent the tuple. This process occurs asynchronously among all agents, eliminating the
need for a locking mechanism between them.
NN implementation. As shown in Fig. 18, for each input type, we use a proper embedding method
to extract the underlying features. Specifically, for each traffic demand, BS load, and channel quality

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

38:22 Ahmad Hassan et al.

Table 8. 5G QoS Identifier (5QI) for each application used in evaluation (§8).
Application 5QI Latency-sensitive Application 5QI Latency-sensitive

EVA 7 Yes LVC 80 Yes
EAVP 84 Yes HFT 6 No
LVI 71 No Background Traffic 6 No
VoD 6 No

feature, we first leverage a single 1D-CNN layer with kernel=4, channels=64, stride=1 to extract
corresponding features to a 64-dim layer. Meanwhile, we utilize a fully connected layer to extract
useful characteristics for the QoS feature. The selected features are then passed into another fully
connected layer and outputs a 64-dims vectors. Finally, the output of the actor network is a single
neuron, which represents the percentage of UL S&S. We utilize ReLU as the active function for each
feature extraction layer and leverage sigmoid for the last layer. We use TensorFlow [9] to construct
the NN architecture and TensorFlow Serving [15] to containerize, deploy, and manage the NN
models.Wixor’s RL agent takes the past sequence length 𝑘 = 8 into the NN. We set the learning
rate to 1𝑒−3 and use the Adam optimizer [48] to train the model. The batch size is 64 by default.

A.2 Guard Period Calculation
Eqns. 4a and 4b calculate the number of guard symbols required for DL→UL transition 𝑔𝑑,𝑢 and
UL→DL transition 𝑔𝑢,𝑑 , respectively. First, Wixor determines the symbol duration Δ𝑠 (Eqn. 4c)
according to the BS numerology 𝜇 and cyclic prefix length Δ𝑐𝑝 needed to combat inter-symbol
interference. To get 𝑔𝑑,𝑢 , Wixor adds two terms as noted in Eqn. 4a: (i) the propagation delay given
by 2 × R/𝑐 , where R is the maximum coverage radius of the BS and 𝑐 is the speed of light, and
(ii) UE’s hardware delay when switching from Rx to Tx mode Δ𝑇𝑥,𝑅𝑥

𝑢𝑒 . Finally, it divides the sum
of two terms by the symbol duration to get guard symbols required for DL→UL transition. On the
other hand, the calculation of 𝑔𝑢,𝑑 does not consider the propagation delay as the BS already sends
the timing advance to ensure that UL transmissions from all UEs are synchronized when received
by the BS [1, 2]. Therefore, Eqn. 4b simply divides BS’s Rx to Tx switching delay Δ𝑅𝑥,𝑇𝑥

𝑏𝑠
with the

symbol duration to get 𝑔𝑢,𝑑 . Δ𝑅𝑥,𝑇𝑥

𝑏𝑠
, in turn, depends on BS’s timing advance offset (𝑁𝑇𝐴,𝑂𝑓 𝑓 𝑠𝑒𝑡 ·𝑇𝑐),

where 𝑁𝑇𝐴,𝑂𝑓 𝑓 𝑠𝑒𝑡 is the reference point for the UE’s initial transmission and 𝑇𝑐 is simply BS’s time
unit (0.509 ns). For our typical BS configuration (𝜇=1,R=100m, Δ𝑐𝑝=2.34us), the calculations suggest
using at least 2 guard symbols for DL→UL transition and 1 guard symbol for UL→DL transition.

𝑔𝑑,𝑢 =
⌈
(2 × R/𝑐 + Δ𝑅𝑥,𝑇𝑥

𝑢𝑒)/Δ𝑠
⌉

(4a)

𝑔𝑢,𝑑 =

⌈
Δ𝑅𝑥,𝑇𝑥

𝑏𝑠
/Δ𝑠

⌉
=
⌈
𝑁𝑇𝐴,𝑂𝑓 𝑓 𝑠𝑒𝑡 ·𝑇𝑐/Δ𝑠

⌉
(4b)

Δ𝑠 =
1

2𝜇 × 15𝐾𝐻𝑧
+ Δ𝑐𝑝 (4c)

A.3 5G QoS Identifier (5QI)
Table 8 presents the 5QI values for all applications. These values are used in the calculation of
buffering tolerance factor 𝜌𝑡 (§7). For simulation experiments, each app sets up its data bearers with
the corresponding 5QI value. The PX7 phone however lacks the ability to configure 5QI, therefore,
we use a fixed value (𝜌𝑡 = 0.5) in our over-the-air testbed evaluations (§8.3).

B Wixor Implementation
Wixor prototype.Wixor is built on top of srsRAN [13, 16], an open-source 5G software defined
radio suite. We modified the user plane protocol stack (5G Layer 2) in srsRAN to implement Wixor
in over 2.3K lines of C/C++ code. First, we added support for dynamic TDD, enabling runtime TDD
policy adaptation. Further, we implemented necessary logging functionality for the PDCP, RLC,

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

Wixor: Dynamic TDD Policy Adaptation for 5G/xG Networks 38:23

and MAC layers to support feature engineering. We developed a modular TDD policy adaptation
engine atop the TDD MAC scheduler, capable of supporting any TDD policy out of the box. The
engine receives BS logs at (configurable) periodic intervals and includes a callback function to
change the TDD policy.Wixor is implemented as a derived class of this modular engine. It processes
BS logs (to be described next) to create BS-level features (§5.1), which are then fed toWixor’s RL
agent (§5.2). Deployed with TensorFlow Serving [15], the RL agent outputs the UL S&S percentage,
which is post-processed using the conservative policy smoothing technique (§6.1). Wixor then
derives the best TDD pattern using the UL S&S percentage and guard period information (§6.2).
If the newly computed TDD pattern differs from the current one, Wixor waits until the next
transmission period to execute the TDD policy via the callback. Once triggered, the modular TDD
policy adaptation engine simply updates BS’s objects and data structures that maintain the TDD
policy information. We believe that this deployment is practical, given that cellular networks,
including BSs are becoming open and programmable [30].
Faithful simulator. We developed a faithful 5G network simulator based on the 𝑛𝑠3 5G Lena [5]
codebase. Wixor’s simulator proof-of-concept essentially mirrors the over-the-air prototype’s
implementation, including support for dynamic TDD and a modular TDD policy adaptation engine.
Additionally, we integrated trace-driven channel simulations and implemented several application
trafficworkload generators (§3.1). Lastly, we used the ns3-gym toolkit [38] alongwith Tensorflow [9]
to train the RL models. Overall, we added or modified 4.2K+ lines of C/C++ and Python code.
Data collection for feature engineering. Recall from §5.1 thatWixor uses several features to
understand the RAN context. Specifically, it obtains the DL buffer occupancy 𝑏𝑑,𝑖𝑡 for UE 𝑖 from
the RLC per-UE queues and 𝑏𝑢,𝑖𝑡 from quantized buffer status reports (BSRs) via the MAC control
element. Inter-arrival times 𝜆𝑢,𝑖𝑡 and 𝜆𝑑,𝑖𝑡 are calculated using RLC service data units (SDUs) arriving
in the UL and DL RLC queues, respectively.Wixor also computes 𝑠𝑑,𝑖𝑡 and 𝑠𝑢,𝑖𝑡 as the average SDU
packet sizes from these queues. The DL HoL delay ℎ𝑑,𝑖𝑡 represents the time spent by the first SDU
packet in the DL RLC queue. Besides, ℎ𝑢,𝑖𝑡 is estimated as (𝑏𝑢,𝑖

𝑡−1 − 𝑡
𝑢,𝑖
𝑡 · Δ𝑡)/𝑠𝑢,𝑖𝑡 , where 𝑡𝑢,𝑖𝑡 (𝑡𝑑,𝑖𝑡) are

UE’s UL (DL) throughput from the PDCP layer, and Δ𝑡 is the system time step. Resource utilizations
𝑟
𝑑,𝑖
𝑡 and 𝑟𝑢,𝑖𝑡 are derived from the MAC scheduler layer. DL channel quality 𝑐𝑑,𝑖𝑡 comes from CQI
reports, while BS directly measures 𝑐𝑢,𝑖𝑡 for the UL channel. InWixor, the buffering tolerance factor
𝜌𝑡 can be either fixed or computed using 5G QoS identifier (5QI), with the default being the latter.
𝜌𝑡 is computed as the ratio of latency-sensitive flows in the BS. Appendix A.3 details our use of 5QI
to identify latency-sensitive flows for tested applications (§3.1).

C Evaluation Details & Supplementary Results
C.1 Application Setup
(i) Edge Video Analytics (EVA): We select a popular EVA task, i.e., Object Detection. The EVA app
uses a state-of-the-art video analytics model (i.e., YOLOv7 [76]) deployed on the edge server (§3.1).
Instead of sending camera feeds, a UE streams video frames from the COCO dataset [52] at 30 FPS.
(ii) Edge-assisted Vehicle Perception (EAVP): Autonomous vehicles rely on object tracking to ensure
safe and robust driving performance. Using siamFC++ model [80], we set up an EAVP app on the
edge server for multiple object tracking. The UE transmits five camera feeds (front and sides) at
30 FPS using theWaymo Open Dataset [70]. (iii) Live Video Ingest (LVI): We re-purpose Ant-Media’s
LiveVideoBroadcaster [7] to publish a pre-recorded video stream (1080p @ 30 FPS with 6.5 Mbps
average bitrate). The UEs send adaptive RTMP feeds [17] to an Ant Media server [7] deployed on
the application server (§3.1). (iv) Video-on-Demand (VoD): Our VoD streaming experiments use a
dash.js [8] player to stream a 4min video.Wemainly test buffer-based BOLA [68] and rate-based [50]

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

38:24 Ahmad Hassan et al.

90 80 70

RTT (ms)

22

25

28

31

T
C

P
T

p
u

t.
(M

b
p

s)

bette
r

CPS Off

CPS On

DRP Wixor

Fig. 19. Evaluating conserva-
tive policy smoothing.

Table 9. Comparing
different RL schemes.

RL Scheme Average test
reward 𝑟𝑡

Wixor’s SAC 0.93±0.22
DQN 0.67±0.28
PPO 0.90±0.21

Table 10. Varying number
of neurons.

of neurons and filters
for each 1D-CNN unit

Average test
reward 𝑟𝑡

32 0.82±0.28
64 0.93±0.22
128 0.94±0.18
256 0.94±0.14

Table 11. Varying num-
ber of hidden layers.

of hidden layers Average test
reward 𝑟𝑡

1 0.93±0.22
2 0.93±0.28
3 0.89±0.26
6 0.81±0.34

adaptive bitrate (ABR) algorithms due to their popularity. The video is encoded at 6 unique quality
levels with average bitrates ranging from 0.8 Mbps to 6 Mbps. (v) Live Video Conferencing (LVC):
We implement a peer-to-peer LVC app based on WebRTC [14], a real-time video communication
framework. Instead of using the video camera, the LVC app streams a 1280 × 780 pre-recorded
meeting video at 30 FPS. (vi) HTTP File Transfer (HFT): The UE repeatedly uploads/downloads a
128MB file to/from the application server.We log the total file download/upload time to show results.

C.2 Micro-benchmarking
Benefit of conservation policy smoothing. Recall from §3.2 that abrupt TDD policy changes
can mislead rate adaptation modules and result in lost performance. We repeat the same TCP
experiment (Fig. 6) to see how well the conservative policy smoothing (CPS) module addresses the
issue. Fig. 19 compares the TCP throughput and round-trip-time (RTT) for two cases: CPS enabled
(on) and disabled (off). Compared to the case when CPS is disabled, the CPS enabled setting results
in 5.9% lower average RTT and 14.7% higher average throughput. In addition, the CPS enabled
setting reduces the RTT variance caused by TDD policy changes.
Comparison with RL schemes. While we employ the Soft-Actor-Critic (SAC) algorithm to
trainWixor’s RL agent, a variety of algorithms can be utilized within the abstract RL framework
described in §5.2. Here, we compare Wixor with Deep Q-Network (DQN [60]) and Proximal Policy
Optimization (PPO [64]). DQN is a “tabular” q-learning method that represents the RL policy as
a table with discrete entries for all state-action pairs, whereas PPO is a recent policy gradient
method. We train PPO in the same way as Wixor while DQN uses fine-grained state and action
space quantization. Table 9 presents the average QoS reward 𝑟𝑡 (Eqn. 1) attained by each method
on the test traces. The results indicate a substantial performance disparity (27.9%) between the
tabular scheme andWixor, underscoring the inadequacy of tabular RL schemes in capturing the
complexities of the RAN environment. Conversely, PPO demonstrates performance comparable to
Wixor’s SAC method, with only a 3.2% gap.
NN architecture.We conduct a comprehensive parameter sweep to evaluate the impact of various
NN parameters on 𝑟𝑡 . Tables 10 and 11 present the average test reward corresponding to different
numbers of neurons and hidden layers, respectively. Our findings indicate that performance plateaus
once the number of filters in the 1D-CNN and the number of neurons each exceed 64. Additionally,
the results reveal that the NN with a single hidden layer yields the best performance.
Training time. We quantify the overhead associated with training Wixor’s RL agent. The training
process encompassed approximately 300,000 iterations, equivalent to 3.5 hours of runtime. Each
iteration required 42 milliseconds and involved concurrent parameter updates for 8 agents. It is
important to note that this overhead represents a one-time, offline computational cost.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 38. Publication date: December 2024.

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 A Primer on 5G
	2.2 Related Work

	3 Motivation & Challenges
	3.1 Experiment Setup
	3.2 Need for Dynamic TDD Policy Adjustment
	3.3 Challenges

	4 Wixor Design
	5 Proactive Demand Customization
	5.1 Cross-layer BS-level Feature Engineering
	5.2 Context-aware Resource Forecasting

	6 Context-aware Policy Provision
	6.1 Conservative Policy Smoothing
	6.2 QoS-aware TDD Policy Derivation

	7 Implementation
	8 Evaluation
	8.1 Experiment Setup
	8.2 Overall Benefit for the Applications
	8.3 Over-the-air Evaluation of Wixor
	8.4 Wixor under Diverse Settings
	8.5 Wixor Deep Dive

	9 Discussion & Conclusion
	Acknowledgments
	References
	A Design & Implementation Details
	A.1 RL Agent Architecture and Training
	A.2 Guard Period Calculation
	A.3 5G QoS Identifier (5QI)

	B Wixor Implementation
	C Evaluation Details & Supplementary Results
	C.1 Application Setup
	C.2 Micro-benchmarking

